首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redistribution of particulate organic matter during ultrasonic dispersion of highly weathered soils
Authors:K Oorts  B Vanlauwe  S Recous  & R Merckx
Institution:Laboratory for Soil and Water Management, Faculty of Agricultural and Applied Biological Sciences, K.U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven/Heverlee, Belgium,; Tropical Soil Biology and Fertility Program, UNESCO-Gigiri, PO Box 30597, Nairobi, Kenya, and; INRA, Unitéd'Agronomie Laon-Reims-Mons, Rue Fernand Christ, 02007 Laon Cedex, France
Abstract:The use of ultrasonic energy for the dispersion of aggregates in studies of soil organic matter (SOM) fractionation entails a risk of redistribution of particulate organic matter (POM) to smaller particle‐size fractions. As the mechanical strength of straw also decreases with increasing state of decomposition, it can be expected that not all POM will be redistributed to the same extent during such dispersion. Therefore, we studied the redistribution of POM during ultrasonic dispersion and fractionation as a function of (i) dispersion energy applied and (ii) its state of decomposition. Three soils were dispersed at different ultrasonic energies (750, 1500 and 2250 J g?1 soil) or with sodium carbonate and were fractionated by particle size. Fraction yields were compared with those obtained with a standard particle‐size analysis. Undecomposed or incubated (for 2, 4 or 6 months) 13C‐enriched wheat straw was added to the POM fraction (0.25–2 mm) of one of the soils before dispersion and fractionation. Dispersion with sodium carbonate resulted in the weakest dispersion and affected the chemical properties of the fractions obtained through its high pH and the introduction of carbonate. The mildest ultrasonic dispersion treatment (750 J g?1) did not result in adequate soil dispersion as too much clay was still recovered in the larger fractions. Ultrasonic dispersion at 1500 J g?1 soil obtained a nearly complete dispersion down to the clay level (0.002 mm), and it did not have a significant effect on the total amount of carbon and nitrogen in the POM fractions. The 2250 J g?1 treatment was too destructive for the POM fractions since it redistributed up to 31 and 37%, respectively, of the total amount of carbon and nitrogen in these POM fractions to smaller particle‐size fractions. The amount of 13C‐enriched wheat straw that was redistributed to smaller particle‐size fractions during ultrasonic dispersion at 1500 J g?1 increased with increasing incubation time of this straw. Straw particles incubated for 6 months were completely transferred to smaller particle‐size fractions. Therefore, ultrasonic dispersion resulted in fractionation of POM, leaving only the less decomposed particles in this fraction. The amounts of carbon and nitrogen transferred to the silt and clay fractions were, however, negligible compared with the total amounts of carbon and nitrogen in these fractions. It is concluded that ultrasonic dispersion seriously affects the amount and properties of POM fractions. However, it is still considered as an acceptable and appropriate method for the isolation and study of SOM associated with silt and clay fractions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号