首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林算法构建白眉野草螟监测预警模型
引用本文:程娇,龚静莲,汪深,刘勇. 基于随机森林算法构建白眉野草螟监测预警模型[J]. 植物保护学报, 2019, 46(3): 549-555
作者姓名:程娇  龚静莲  汪深  刘勇
作者单位:山东农业大学植物保护学院, 泰安 271018,山东农业大学植物保护学院, 泰安 271018,山东农业大学植物保护学院, 泰安 271018,山东农业大学植物保护学院, 泰安 271018
基金项目:国家重点研发计划(2017YFD0201705),山东省重点研发计划(2016GGX109002)
摘    要:为科学防治白眉野草螟Agriphila aeneociliella,以16种气象因子为自变量,以白眉野草螟发生程度为因变量,采用随机森林算法构建白眉野草螟的监测预警模型,并利用构建的模型对2010—2016年影响鲁东地区白眉野草螟发生程度的关键气象因子进行分析。结果表明,当特征值为9,决策树数量为400时,白眉野草螟监测预警模型的袋外估计错误率最低,为17.88%,轻度发生和重度发生的错误率分别为17.58%和18.18%。利用测试数据检验模型,模型错误率为20.00%。通过所构建的模型分析显示影响鲁东地区白眉野草螟发生程度的关键气象因子为平均水汽压、日最低气温、平均气温和日最高气温,其Gini值分别为18.82、14.84、13.67和9.30。

关 键 词:白眉野草螟  监测预警  随机森林算法  气象因子
收稿时间:2018-01-17

Establishment of monitoring and forecasting model for eastern grass veneer Agriphila eneociliella based on the random forest algorithm
Cheng Jiao,Gong Jinglian,Wang Shen and Liu Yong. Establishment of monitoring and forecasting model for eastern grass veneer Agriphila eneociliella based on the random forest algorithm[J]. Acta Phytophylacica Sinica, 2019, 46(3): 549-555
Authors:Cheng Jiao  Gong Jinglian  Wang Shen  Liu Yong
Affiliation:College of Plant Protection, Shandong Agricultural University, Tai''an 271018, Shandong Province, China,College of Plant Protection, Shandong Agricultural University, Tai''an 271018, Shandong Province, China,College of Plant Protection, Shandong Agricultural University, Tai''an 271018, Shandong Province, China and College of Plant Protection, Shandong Agricultural University, Tai''an 271018, Shandong Province, China
Abstract:In order to control eastern grass veneer Agriphila aeneociliella scientifically, the random forest algorithm was used to construct a monitoring and forecasting model, in which 16 meteorological factors were used as independent variables and the degree of occurrence of A. aeneociliella was used as dependent variable. The model was then used to analyze the key meteorological factors which affected the occurrence of A. aeneociliella in eastern Shandong from 2010 to 2016. The results showed that, when the number of eigenvalues was nine, and the number of decision trees was 400, the least estimated error rate of the out-of-bag estimation of the model was 17.88%, and the point error rate of low and severe occurrence was 17.58% and 18.18%, respectively. The error rate of the model was 20.00% when tested by the testing data. The constructed model showed that the key meteorological factors affecting the occurrence degree of A. aeneociliella were average water vapor pressure, daily minimum temperature; average temperature and daily maximum temperature. Their Gini values were 18.82, 14.84, 13.67 and 9.30, respectively.
Keywords:Agriphila aeneociliella  monitoring and forecasting  random forest algorithm  meteorological factors
本文献已被 CNKI 等数据库收录!
点击此处可从《植物保护学报》浏览原始摘要信息
点击此处可从《植物保护学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号