首页 | 本学科首页   官方微博 | 高级检索  
     

适宜机插株行距提高不同穗型粳稻产量
引用本文:胡雅杰,邢志鹏,龚金龙,张洪程,戴其根,霍中洋,许 轲,魏海燕,李德剑,沙安勤,周有炎,刘国林,陆秀军,刘国涛,朱嘉炜. 适宜机插株行距提高不同穗型粳稻产量[J]. 农业工程学报, 2013, 29(14): 33-44
作者姓名:胡雅杰  邢志鹏  龚金龙  张洪程  戴其根  霍中洋  许 轲  魏海燕  李德剑  沙安勤  周有炎  刘国林  陆秀军  刘国涛  朱嘉炜
作者单位:1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;2. 江苏省兴化市农业局,兴化 225700;2. 江苏省兴化市农业局,兴化 225700;2. 江苏省兴化市农业局,兴化 225700;2. 江苏省兴化市农业局,兴化 225700;2. 江苏省兴化市农业局,兴化 225700;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009;1. 扬州大学农业部长江流域稻作技术创新中心/扬州大学江苏省作物遗传生理重点实验室,扬州 225009
基金项目:国家"十二五"科技支撑计划重大项目(2011BAD16B03),超级稻配套栽培技术开发与集成(农业部专项),江苏省农业科技自主创新基金项目(CX[2]1003.9),江苏省科技支撑计划(BE2012301)和江苏省高校优势学科建设工程资助。
摘    要:
为探明不同穗型粳稻品种合理机插株行距配置、产量形成规律及其物质生产特征,以大穗型品种甬优2 640、甬优8号,中穗型品种武运粳24号、宁粳3号和小穗型品种淮稻5号、淮稻10号为材料,研究了机插株行距对不同穗型粳稻品种产量、叶面积指数、光合势、物质生产与积累、群体生长率和净同化率的影响。结果表明:大穗型行距30 cm机插,扩大株距,利于形成大穗而高产;中穗型2种行距机插平均产量相当,但行距30 cm机插生育后期透风透光条件好,利于提高千粒重和结实率,产量潜力高;小穗型行距25 cm机插显著增加穗数而高产。大穗型行距30 cm机插抽穗、成熟期叶面积指数大,粒叶比高,叶面积衰减率低,抽穗期群体质量优,生育中后期光合势大、群体生长率和净同化率高,从而物质积累量高;中穗型行距30 cm机插生物学产量略低,但收获指数高;小穗型行距25 cm机插群体基本苗多,叶面积指数和光合势大,生育中后期群体生长率和净同化率高,物质积累量高。因此,大、中穗型宜采用行距30 cm机插,小穗型宜采用行距25 cm机插,并配套相应株距,能充分发挥不同穗型粳稻品种产量潜力。

关 键 词:农业机械  耕作  光合  株行距  穗型  机插粳稻  产量
收稿时间:2013-02-03
修稿时间:2013-06-05

Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices
Hu Yajie,Xing Zhipeng,Gong Jinlong,Zhang Hongcheng,Dai Qigen,Huo Zhongyang,Xu Ke,Wei Haiyan,Li Dejian,Sha Anqin,Zhou Youyan,Liu Guolin,Lu Xiujun,Liu Guotao and Zhu Jiawei. Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 33-44
Authors:Hu Yajie  Xing Zhipeng  Gong Jinlong  Zhang Hongcheng  Dai Qigen  Huo Zhongyang  Xu Ke  Wei Haiyan  Li Dejian  Sha Anqin  Zhou Youyan  Liu Guolin  Lu Xiujun  Liu Guotao  Zhu Jiawei
Affiliation:1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;2. Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, China;2. Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, China;2. Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, China;2. Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, China;2. Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;1. Innovation Center of Rice Cultivation Technology in the Yangtze Valley Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
Abstract:
Abstract: Mechanical transplanted rice had many advantages, such as stabilizing yield, saving cost, maintaining high efficiency and freeing labor, and its area was larger and larger in China in recent years. It was reported that the existing row-spacing of mechanical transplanted rice was too big in some rice cultivars with small panicle. Therefore, three panicle types of rice cultivars including large panicle type (LPT include yongyou 2640 and yongyou 8) and medium panicle type (MPT include wuyunjing 24, ningjing 3) and small panicle type (SPT include huaidao 5, huaidao 10) were grown in the field in 2011 and 2012 to investigate the reasonable row-plant spacing of each type of cultivars, the characteristics of dry matter production and the rules of yield formation in mechanical transplanted rice. And the effect of row-plant spacing on grain yield and yield components, leaf area index (LAI), photosynthetic potential (PP), dry matter production and accumulation, crop growth rate (CGR) and net assimilation rate (NAR) were all studied. Results showed that with 30cm row-spacing and expanded plant spacing, it is easy for LPT to obtain high yield due to the larger size of panicle. For MPT, There was no significant difference in grain yield between RS30 (row-spacing of 30cm in mechanical transplanted japonica rice) and RS25 (row-spacing of 25 cm in mechanical transplanted japonica rice), but RS30 had higher yield potential because of well wind and light conditions which may improve filled-grain percentage and 1000-grain weight. For SPT, RS25 was conductive to increase the basic seedlings, and with stable spikelets per panicle, it will obtain high yield because of the significant increase of panicles per unit area. With plant-spacing increased, panicles per unite area of different varieties decreased while spikelets per panicle increased significantly. The filled-grain percentage and 1000-grain weight of RS30 were all higher than that of RS25. With RS30, LPT had higher LAI at heading and maturity, larger spikelet per cm2 leaf area, lower decreasing rate of leaf area, higher dry matter accumulation and PP, CGR, NAR at the medium and late growth period. For MPT, dry matter accumulation of RS30 was fewer than that of RS25, but there were no differences in LAI, PP and NAR between RS30 and RS25. For SPT, because of the larger number of basic seedlings, the LAI at all period stages, PP, CGR and NAR at the medium and late growth period, as well as the amount of dry matter accumulation of RS25 were all higher than that of RS30. Therefore, we concluded that the proper row spacing for LPT and MPT is 30 cm while for SPT is 25 cm. And the japonica rice transplanted by mechanism will realize its yield potential only when different panicle types of rice cultivars match suitable plant-spacing.
Keywords:agricultural machinery   cultivation   photosynthesis   row-plant spacing   panicle type   mechanical transplanted japonica rice   yield
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号