首页 | 本学科首页   官方微博 | 高级检索  
     

改进YOLO v4模型在鱼类目标检测上的应用研究
引用本文:郑宗生,李云飞,卢鹏,邹国良,王振华. 改进YOLO v4模型在鱼类目标检测上的应用研究[J]. 渔业现代化, 2022, 0(1): 82-88,96
作者姓名:郑宗生  李云飞  卢鹏  邹国良  王振华
作者单位:上海海洋大学信息学院
基金项目:上海市科委地方院校能力建设项目(190505022100);国家海洋局科学技术重点实验室开放基金项目(B201801034);科技发展专项基金(A2-2006-20-200211)。
摘    要:
鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义.为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函数基础上构建了新的损失项,改进的损失函数使真实框与相交框呈...

关 键 词:鱼类目标检测  CIoU损失  损失函数  YOLO v4模型

Application research of improved YOLO v4 model in fish object detection
ZHENG Zongsheng,LI Yunfei,LU Peng,ZOU Guoliang,WANG Zhenhua. Application research of improved YOLO v4 model in fish object detection[J]. Fishery Modernization, 2022, 0(1): 82-88,96
Authors:ZHENG Zongsheng  LI Yunfei  LU Peng  ZOU Guoliang  WANG Zhenhua
Affiliation:(Shanghai Ocean University,Colleage of Information,Shanghai 201306,China)
Abstract:
Fish object detection is of great significance for precision aquaculture,production automation,resource investigation and fish behavior research.In order to get the position and category of fish object quickly and accurately,a fish object detection method based on improved model YOLO v4 is proposed,Based on the CIoU(complete intersection over union)loss function,a new loss term is constructed.The improved loss function makes the real box and the intersecting box regress in the same aspect ratio.At the same time,the detection effect on a specific size and area is enhanced by setting a multi anchor box mode.The results show that the mAP(mean average precision)of the improved model YOLO v4 is greatly improved compared with the original model.The mAP on the self built data set,data set Fish4 knowledge and data set NCFM reaches 94.22%,99.52%and 92.16%respectively.The research shows that the improved model YOLO v4 can quickly and accurately detect the position and category of fish,and the detection speed meets the real-time requirements,which can provide a reference for precision aquaculture of fishery.
Keywords:fish object detection  CIoU loss  loss function  YOLO v4 model
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号