首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Medium‐ and short‐term available organic matter,microbial biomass,and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony,Germany
Authors:Dirk Landgraf  Sven Wedig  Susanne Klose
Abstract:Total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities in a sandy soil under pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands were investigated in a field study near Riesa, NE Germany. Samples of the organic layers (Oi and Oe‐Oa) and the mineral soil (0–5, 5–10, 10–20, and 10–30 cm) were taken in fall 1999 and analyzed for their contents of organic C and total N, hot‐water‐extractable organic C and N (HWC and HWN), KCl‐extractable organic C and N (Corg(KCl) and Norg(KCl)), NH ‐N and NO ‐N, microbial‐biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With exception of the HWC, all investigated C and N pools showed a clear response to tilling, which was most pronounced in the Oi horizon. Compared to soils under pine, those under black locust had higher contents of medium‐ and short‐term available C (HWC, Corg(KCl)) and N (HWN, Norg(KCl)), mineral N (NH ‐N, NO ‐N), microbial‐biomass C and N, and enzyme activities in the uppermost horizons of the soil. The strong depth gradient found for all studied parameters was most pronounced in soils under black locust. Microbial‐biomass C and N and enzyme activities were closely related to the amounts of readily mineralizable organic C (HWC and Corg(KCl)). However, the presented results implicate a faster C and N turnover in the top‐soil layers under black locust caused by higher N‐input rates by symbiotic N2 fixation.
Keywords:soil organic matter  hot‐water extract  KCl extract  microbial biomass  enzyme activities  black locust  Scots pine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号