首页 | 本学科首页   官方微博 | 高级检索  
     

基于水青树叶表型性状的核心种质资源库构建策略
引用本文:张欢,王东,段帆,李珊,甘小洪. 基于水青树叶表型性状的核心种质资源库构建策略[J]. 林业科学研究, 2019, 32(2): 166-173
作者姓名:张欢  王东  段帆  李珊  甘小洪
作者单位:西南野生动植物资源保护教育部重点实验室, 四川 南充 637009;西南山地特色植物种质适应与利用研究所, 西华师范大学, 四川 南充 637009,四川省凉山州林业调查规划设计院, 四川 西昌 615000,西南野生动植物资源保护教育部重点实验室, 四川 南充 637009;西南山地特色植物种质适应与利用研究所, 西华师范大学, 四川 南充 637009,西南野生动植物资源保护教育部重点实验室, 四川 南充 637009;西南山地特色植物种质适应与利用研究所, 西华师范大学, 四川 南充 637009,西南野生动植物资源保护教育部重点实验室, 四川 南充 637009;西南山地特色植物种质适应与利用研究所, 西华师范大学, 四川 南充 637009
基金项目:四川省科技厅应用基础面上项目(No.2017JY0164);西华师范大学英才基金(No.17YC325)
摘    要:[目的]为了更好地构建水青树核心种质资源库,本文以161个水青树种质为试材,利用叶表型性状的遗传变异数据,对其构建方法进行了探索。[方法]首先,采用欧氏距离和瓦尔德法对所有个体进行逐步聚类;然后,设定10个取样比例(10%、15%、20%、25%、30%、35%、40%、45%、50%、55%),分别用随机取样策略、偏离度取样策略和位点优先取样策略筛选出与之对应的核心种质资源库。将这3种不同取样策略构建的核心种质资源库进行比较,从而筛选出最适种质资源。[结果](1)三种取样策略中,位点优先取样法明显提高了其种质资源库的方差差异百分率(VD)、变异系数变化率(VR)和极差符合率(CR),且45%是最适合构建水青树核心种质资源库的比例;(2)对种质资源核心库不同数量性状进行t检验,其累计贡献率达到82%以上。[结论]在欧氏距离结合瓦尔德法聚类条件下,位点优先取样策略是构建水青树种质资源核心库的最佳方法。

关 键 词:水青树  核心种质资源库  遗传距离  聚类方法  取样策略  表型性状
收稿时间:2018-03-29
修稿时间:2018-12-28

Construction Strategy of Core Collection Based on Leaf Phenotypic Traits of Tetracentron sinense
ZHANG Huan,WANG Dong,DUAN Fan,LI Shan and GAN Xiao-hong. Construction Strategy of Core Collection Based on Leaf Phenotypic Traits of Tetracentron sinense[J]. Forest Research, 2019, 32(2): 166-173
Authors:ZHANG Huan  WANG Dong  DUAN Fan  LI Shan  GAN Xiao-hong
Affiliation:Key Laboratory of Southwest China Wildlife Resources Conservation(China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, China;Institute of Plant Adaptation and Utilization in Southwest Mountain, China West Normal University, Nanchong 637009, Sichuan, China,Sichuan Liangshan Forestry Investigation, Planning and Design Institute, Xichang 615000, Sichuan, China,Key Laboratory of Southwest China Wildlife Resources Conservation(China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, China;Institute of Plant Adaptation and Utilization in Southwest Mountain, China West Normal University, Nanchong 637009, Sichuan, China,Key Laboratory of Southwest China Wildlife Resources Conservation(China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, China;Institute of Plant Adaptation and Utilization in Southwest Mountain, China West Normal University, Nanchong 637009, Sichuan, China and Key Laboratory of Southwest China Wildlife Resources Conservation(China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, China;Institute of Plant Adaptation and Utilization in Southwest Mountain, China West Normal University, Nanchong 637009, Sichuan, China
Abstract:[Objective] To construct the core collection bank of Tetracentron sinense.[Method] Taking 161 germplasm of T. sinense as samples, the genetic variation data of leaf phenotypic characters of T. sinense were studied. First, the methods of Euclidean distance and Wald were used to cluster all individuals step by step. Second, 10 sampling ratios (10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%) were set, and then their core collection were screened by random sampling strategy, deviation sampling strategy and allele preferred sampling strategy. The germplasm resource banks constructed under different sampling strategies were compared and then the optimum core collection was screened out.[Result] (1) Among the three sampling strategies, the allele preferred sampling strategy significantly increased the percentage of variance difference (VD), the variation rate of coefficient of variation(VR) and the coincidence rate of range difference (CR) in core collection. 45% is the most suitable sampling ratio to construct core collection of T. sinense. (2) The t test for different quantitative characters of core collection showed that the cumulative contribution rate of core collection was higher than 82%.[Conclusion] The allele preferred sampling strategy is the most appropriate to construct the core collection of T. sinense with the methods of Euclidean distance and Wald.
Keywords:Tetracentron sinense  core collection  genetic distance  clustering method  sampling strategy  phenotypic traits
本文献已被 CNKI 等数据库收录!
点击此处可从《林业科学研究》浏览原始摘要信息
点击此处可从《林业科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号