首页 | 本学科首页   官方微博 | 高级检索  
     

Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法
引用本文:黄林生,江静,黄文江,叶回春,赵晋陵,马慧琴,阮超. Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法[J]. 农业工程学报, 2019, 35(17): 178-185
作者姓名:黄林生  江静  黄文江  叶回春  赵晋陵  马慧琴  阮超
作者单位:1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,合肥 230601,1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,合肥 230601;3. 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094,1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,合肥 230601;2. 三亚中科遥感研究所,海南 572029;3. 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094,2. 三亚中科遥感研究所,海南 572029;3. 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京,1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,合肥 230601,3. 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094,1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,合肥 230601;3. 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094
基金项目:安徽省科技重大专项(16030701091);国家高层次人才特殊支持计划(万人计划,黄文江);海南省万人计划配套项目(黄文江);安徽省高等学校自然科学研究重点项目(KJ2019A0030)。
摘    要:选用包含红边等多种不同波段信息的多光谱卫星数据,为区域尺度上展开作物病害监测研究提供更加丰富有效的信息,相比于常规的宽波段卫星遥感影像,搭载红边波段的Sentinel-2影像对作物病害胁迫更加敏感,能显著提高模型精度。该文以陕西省宁强县小麦条锈病为研究对象,基于Sentinel-2影像共提取了26个初选特征因子:3个可见光波段反射率(红、绿、蓝)、1个近红外波段反射率、3个红边波段反射率、14个对病害敏感的宽波段植被指数和5个红边植被指数。结合K-Means和ReliefF算法筛选病害敏感特征,最终筛选出3个宽波段植被指数,包括:增强型植被指数(enhanced vegetation index,EVI)、结构加强色素指数(structure intensive pigment index,SIPI)、简单比值植被指数(simple ratio index,SR),2个红边波段植被指数:归一化红边2植被指数(normalized red-edge2 index,NREDI2)、归一化红边3植被指数(normalized red-edge3 index,NREDI3)。利用BP神经网络方法(back propagation neural network,BPNN),分别以宽波段植被指数和宽波段植被指数结合红边波段指数作为输入变量构建小麦条锈病严重度监测模型,对比2种模型的监测精度。结果显示,基于宽波段植被指数结合红边波段植被指数的监测模型的总体精度达到83.3%,Kappa系数0.73,优于仅基于宽波段植被指数特征所建监测模型的精度73.3%,Kappa系数0.58。说明红边波段能够为病害监测提供有效信息,采用宽波段植被指数和红边波段植被指数相结合的方法能够有效提高作物病虫害监测模型精度。

关 键 词:遥感;算法;病害;Sentinel-2红边;小麦;条锈病;BP神经网络
收稿时间:2019-04-17
修稿时间:2019-08-27

Wheat yellow rust monitoring based on Sentinel-2 Image and BPNN model
Huang Linsheng,Jiang Jing,Huang Wenjiang,Ye Huichun,Zhao Jinling,Ma Huiqin and Ruan Chao. Wheat yellow rust monitoring based on Sentinel-2 Image and BPNN model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 178-185
Authors:Huang Linsheng  Jiang Jing  Huang Wenjiang  Ye Huichun  Zhao Jinling  Ma Huiqin  Ruan Chao
Affiliation:1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University 230601, China,1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University 230601, China; 3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China,1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University 230601, China; 2. Sanya Institute of Remote Sensing, Sanya 572029, China; 3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China,2. Sanya Institute of Remote Sensing, Sanya 572029, China; 3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China,1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University 230601, China,3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China and 1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University 230601, China; 3. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
Abstract:Abstract: Wheat yellow rust is a deadly disease of winter wheat and its timely and accurate detection at regional scale is critical to ameliorate infectious yield loss and safeguard wheat production. With the development in remote sensing technology, satellite imagery with high spatial resolution and high revisiting frequency has become increasingly accessible. Remote sensing data has a unique advantage over traditional method in detecting crop diseases and controlling their spreading, including simple operation, real-time detection, high spatiotemporal resolution and targeting specific-disease, especially the multispectral satellite imagery which covers a wide range of wave bands and provides rich information related to crop diseases at regional scale. Compared to conventional broad band satellite imagery, the Sentinel-2 is a sensor with three wave bands within the edge of the red light which are sensitive to crop diseases. In this study, a Sentinel-2 image acquired in May 12, 2018 was used to extract 26 characteristic variables related to wheat yellow rust, including 3 visible bands (blue, green and red) reflectance variables, one near infrared band, 3 red-edge bands, 14 broad-bands and 5 red-edge vegetation indices. An approach combining K-means and ReliefF algorithm is proposed to filter these features. We first used the RelieF algorithm to calculate the weight of each feature and filter out 10 features most relevant to the disease. The feature with maximum weight was then taken as the initial center of the K-Means algorithm, and other features were added to form a cluster in descending order of their weight. The combination of features with the highest clustering accuracy was taken as the final input variable to the model. The optimal features, including enhanced vegetation index (EVI), structure intensive pigment index (SIPI), simple ratio index (SR), normalized red-edge2 index(NREDI2), normalized red-edge3 index (NREDI3), three wide-band vegetation indices and 2 red edge band vegetation indices were fed into the yellow rust severity monitoring model as input. The back propagation neural network (BPNN) method was a widely used nonlinear artificial neural network and can learn, implicitly, the relationships between inputs and outputs via a multi-layered network. Network training is a process of continual readjustment of weights and thresholds by reducing the network error to a pre-sent minimum or pre-set training steps. We used BPNN to calculate severity of wheat yellow rust (healthy, slight, sever) in Ningqiang County, Shaanxi province, by using the broad-band vegetation indices and the red-edge band vegetation indices as inputs. The results showed that the BPNN model considering broad-band and red-edge vegetation indices as inputs worked better than model using only a single broad-band vegetation indices, improving accuracy by more than 10% and commission accuracy and kappa coefficient reached by 83.3% and 0.73, respectively. The BPNN model includes more information in its input parameters, thereby improving the accuracy of detecting crop diseases. It is more suitable for detecting wheat yellow rust at regional scales and has a wide implication in monitoring and controlling crop diseases at regional scale.
Keywords:remote sensing   algorithms   diseases   Sentinel-2 red-edge   wheat   yellow rust   BPNN
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号