基于波段权重的多尺度Retinex遥感图像渐晕校正方法 |
| |
作者姓名: | 鲍一丹 李艺健 何勇 朱姜蓬 万亮 岑海燕 |
| |
作者单位: | 浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027,浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027,浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027,浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027,浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027,浙江大学生物系统工程与食品科学学院,杭州 310058;农业农村部光谱检测重点实验室,杭州 310058;浙江大学现代光学仪器国家重点实验室,杭州 310027 |
| |
基金项目: | 国家重点研发计划课题(2017YFD0201501);浙江省重点研发计划项目(2015C02007) |
| |
摘 要: | 针对传统函数逼近法存在的校正质量不稳定、耗时长以及Retinex算法存在的光晕、泛灰和光谱数据失真的问题,该文提出了一种带光谱恢复的多尺度Retinex渐晕校正方法。通过对无人机遥感图像全局亮度的估计以及光谱恢复因子的引入,实现无人机遥感光谱图像的渐晕校正。利用该文方法对遥感图像进行处理,并与基于高斯曲面的函数逼近法和多尺度Retinex算法结果进行对比,依据灰度分布情况、标准差、平均梯度、清晰度、光谱相关系数以及光谱角指标进行评价分析。试验结果表明,该文提出的方法可以取得较好的渐晕校正效果,结果不存在光晕、泛灰现象,结果的平均梯度和清晰度均值分别为0.077 4和49.33,相较原始图像和函数逼近法以及多尺度Retinex算法处理结果,平均梯度分别提高了5.94%、5.56%和4.78%,清晰度分别提高了8.94%、6.79%和6.63%,该文方法校正图像的对比度和清晰度更优,方法具有较好的渐晕校正效果。
|
关 键 词: | 遥感 图像处理 Retinex理论 光谱恢复 渐晕校正 |
收稿时间: | 2019-01-11 |
修稿时间: | 2019-06-12 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《农业工程学报》浏览原始摘要信息 |
|
点击此处可从《农业工程学报》下载免费的PDF全文 |
|