首页 | 本学科首页   官方微博 | 高级检索  
     

基于ACO-SVM的粮虫特征提取研究(英文)
引用本文:胡玉霞,张红涛,罗康,张恒源. 基于ACO-SVM的粮虫特征提取研究(英文)[J]. 农业科学与技术, 2012, 0(2): 457-459
作者姓名:胡玉霞  张红涛  罗康  张恒源
作者单位:郑州大学电气工程学院;华北水利水电学院电力学院
基金项目:Supported by the National Natural Science Foundation of China(31101085);the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094);the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
摘    要:[目的]研究基于ACO-SVM的粮虫特征提取,探讨粮虫特征提取的可行性。[方法]通过分析储粮害虫图像识别系统中的1个关键环节——特征提取,提出把支持向量机(Support vector machine,简称SVM)算法中交叉验证训练模型的识别率作为储粮害虫特征提取评价准则的1个重要因子,将蚁群优化算法(Ant Colony Optimization,简称ACO)应用于粮虫特征的自动提取。[结果]该算法从粮虫的17维形态学特征中自动提取出面积、周长等7个特征的最优特征子空间,采用参数优化之后的SVM分类器对90个粮虫样本进行分类,识别率达到95%以上。[结论]该研究表明蚁群优化算法在粮虫特征提取中的应用是可行的。

关 键 词:储粮害虫  蚁群优化算法  支持向量机  特征提取  识别

Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm
Yuxia HU,Hongtao ZHANG,Kang LUO,Hengyuan ZHANG. Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm[J]. Agricultural Science & Technology, 2012, 0(2): 457-459
Authors:Yuxia HU  Hongtao ZHANG  Kang LUO  Hengyuan ZHANG
Affiliation:1. College of Electric Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Institute of Electric Power, North China University of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China
Abstract:[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
Keywords:Stored-grain insects  Ant colony optimization algorithm  Support vector machine  Feature extraction  Recognition
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号