首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diversity,Bioactivity Profiling and Untargeted Metabolomics of the Cultivable Gut Microbiota of Ciona intestinalis
Authors:Caroline Utermann  Vivien A Echelmeyer  Ernest Oppong-Danquah  Martina Blümel  Deniz Tasdemir
Institution:1.GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.);2.Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Abstract:It is widely accepted that the commensal gut microbiota contributes to the health and well-being of its host. The solitary tunicate Ciona intestinalis emerges as a model organism for studying host–microbe interactions taking place in the gut, however, the potential of its gut-associated microbiota for marine biodiscovery remains unexploited. In this study, we set out to investigate the diversity, chemical space, and pharmacological potential of the gut-associated microbiota of C. intestinalis collected from the Baltic and North Seas. In a culture-based approach, we isolated 61 bacterial and 40 fungal strains affiliated to 33 different microbial genera, indicating a rich and diverse gut microbiota dominated by Gammaproteobacteria. In vitro screening of the crude microbial extracts indicated their antibacterial (64% of extracts), anticancer (22%), and/or antifungal (11%) potential. Nine microbial crude extracts were prioritized for in-depth metabolome mining by a bioactivity- and chemical diversity-based selection procedure. UPLC-MS/MS-based metabolomics combining automated (feature-based molecular networking and in silico dereplication) and manual approaches significantly improved the annotation rates. A high chemical diversity was detected where peptides and polyketides were the predominant classes. Many compounds remained unknown, including two putatively novel lipopeptides produced by a Trichoderma sp. strain. This is the first study assessing the chemical and pharmacological profile of the cultivable gut microbiota of C. intestinalis.
Keywords:tunicate  Ciona intestinalis  gut-associated microbiota  marine natural products  antimicrobial activity  anticancer activity  untargeted metabolomics  feature-based molecular networking  in silico MS/MS-based dereplication
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号