首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The importance of dust material in urban soil formation: the experience on study of two young Technosols on dust depositions
Authors:Tatiana V Prokof’eva  Alexey V Kiryushin  Vassiliy A Shishkov  Feodor A Ivannikov
Institution:1.Moscow Lomonosov State University,Moscow,Russia;2.Geography Institute of RAS,Moscow,Russia
Abstract:

Purpose

The volume of dust deposition on the soil surface in Moscow is big enough and make several tens of grams per square meter annually. The role of dust as a soil-forming material is especially high in places with practically no other soil parent materials. It is necessary to consider solid atmospheric precipitation as a parent soil material in urban conditions and its impact on soil properties.

Materials and methods

Samples of two soil bodies were taken near two major highways of Moscow, and airborne solid deposit samples were collected from the roadside barrier in summer and from plant leaves after snowmelt. The fallout samples were studied by methods used for soil because of its silicate matrix (Si~30 % total). Main complex characteristics of samples were obtained by chemical analysis and with a scanning electron microscope with energy-dispersive X-ray spectrometer. Bulk elemental composition, available phosphorus and potassium, carbonates, organic carbon and oil hydrocarbon contents, pH, redox potential, magnetic susceptibility, and particle-size distribution of dust and soils were determined.

Results and discussion

Near the highways, where the process of dust transfer is activated, there are possibilities of dust inclusion into soil and formation of new soil horizons on these deposits. Pedofeatures are formed during a very short period of time. The soil-forming processes are connected with both soil organic matter and mineral compound transformation. Chemical properties of the studied soils correspond to those of usual Moscow soil horizons and dust samples studied previously by Prokofyeva et al. (2011) and Prokof’eva et al. (2015). It was established that atmospheric solid aerosol imports organic carbon, carbonates, and other salts; pollutants such as oil hydrocarbons; and heavy metals into the soil. Airborne deposits influence soil physical properties by enriching the soil with clay and coarse silt fractions.

Conclusions

Investigation of dust deposit composition provides data for characterizing material being continuously deposited on the urban soil surface. The atmospheric fallouts together with construction waste and natural rocks provide the common geochemical properties of urban soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号