摘 要: | 通过计算机视觉技术对齐穗期至成熟期的水稻叶片图像进行分割,提取水稻叶片图像在RGB和HSV颜色空间中的6种颜色特征参数,计算典型的18种颜色分量,分析了颜色特征参数和颜色分量与水稻叶片SPAD值之间的相关关系;然后,采用线性回归分析方法,分别建立了基于RGB颜色空间和基于RGB与HSV颜色空间的SPAD值的估测模型,并采用逐步回归方法,分别建立了基于颜色特征参数和颜色分量的SPAD值的估测模型。结果表明:RGB颜色空间和HSV颜色空间均与水稻叶片的SPAD值有极显著的相关关系,以HSV颜色空间与水稻叶片SPAD值的相关关系更为密切;颜色特征参数H与SPAD值之间的相关关系最密切,其次是S、R、V;颜色分量r/b与SPAD值之间的相关关系最密切,其次是R-B、b、r;在建立的水稻叶片SPAD值的4个估测模型中,以基于颜色分量的逐步回归模型的拟合效果最好。因此,综合RGB和HSV颜色空间中图像颜色信息的分析应用,有利于提高水稻叶片SPAD值的图像反演精度。
|