摘 要: | 以江西省万年县为例,根据万年县测土配方数据,构建以思维进化算法、BP神经网络、四方位搜索法三者结合的模型(MEA-BPNN-F模型),同时加入高程和坡度信息来预测万年县耕地土壤有机质的空间分布,并与普通克里金法(OK模型)、以地理坐标为输入的BP神经网络模型(BPNN-G模型)、以高程和坡度作为辅助变量同时利用四方位搜索法加入邻近信息的BP神经网络模型(BPNN-F模型)进行比较。结果表明:4种模型的预测精度表现为MEA-BPNNF>BPNN-F>BPNN-G>OK。应用MEA-BPNN-F模型预测精度最高、效果最好,比较符合土壤有机质地学运动规律及实际情况。该模型克服了BP神经网络全局搜索能力差和收敛速度慢的缺点,提高了BP神经网络的泛化能力。
|