首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cost-efficient light control for production of two campanula species
Authors:Katrine Heinsvig Kjaer  Carl-Otto Ottosen  Bo Nørregaard Jørgensen
Institution:1. Department of Horticulture Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark;2. The Maersk Mc-Kinney Møller Institute University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
Abstract:A cost-efficient light control system based on weather forecasts, electricity prices and daily photosynthesis integral (DPI) was evaluated for application in the commercial production of the long-day (LD) plant Campanula portenschlagiana ‘Blue Get Mee’ and C. cochlearifolia ‘Blue Wonder’. Experiments were conducted under both autumn and spring conditions and included four treatments. Three treatments were controlled by the software system DynaLight Desktop which automatically defined the most cost-efficient use of supplemental light, -based on a predefined set point of DPI, forecasted solar irradiance and the market price on electricity. The set points of DPI in the three treatments were 300, 450 and 600 mmol CO2 m−2 leaf d−1 and the treatments were compared with a traditional LD 19-h treatment. The DPI-based light control strategy resulted in very irregular light patterns including daily periods of solar irradiance combined with supplemental light in low light periods and a night period interrupted by irregular light breaks (NB-lighting). Both campanula species flowered in the DPI-based treatments during spring, but the flowering percentage was low and non-uniform during autumn. This was caused by a combination of the irregular light, low natural light intensities and a decrease in daily light integral (DLI), and could be restored by maintaining a continuous 19 h photoperiod with incandescent lamps (<5 μmol m−2 s−1), illustrating that photoperiod was an important factor for flowering in LD species grown under low light intensities. Growth in terms of carbon gain was marginally affected by the irregular light and a 25% reduction in electricity costs was achieved without major reductions in plant quality in spring. Our results illustrate that plant production of LD species can be maintained in a cost-efficient light control system where the use of supplemental light is based on weather forecasts and electricity prices.
Keywords:DLD  Daily Light duration  DPI  Daily photosynthesis integral  NB  Night break
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号