首页 | 本学科首页   官方微博 | 高级检索  
     检索      

非生长季刺槐林土壤CH4通量的变化特征及其影响因子
引用本文:庄静静,张劲松,孟平,郑宁,李剑侠.非生长季刺槐林土壤CH4通量的变化特征及其影响因子[J].林业科学研究,2016,29(2):274-282.
作者姓名:庄静静  张劲松  孟平  郑宁  李剑侠
作者单位:中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091;南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091;南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091;南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091;南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;济源市国有大沟河林场, 河南 济源 454650
基金项目:"十二·五"国家科技计划课题"太行山低山区干瘠山地植被恢复技术研究与示范"(2015BAD07B02);中央级公益性科研院所基本科研业务费专项(RIF2013-08)
摘    要:目的]探讨在非生长季不同天气条件下45年生刺槐林土壤CH4通量的日变化和季节变化特征,并确定其主要影响因子.方法]2014年10月-2015年4月(非生长季),在华北低山丘陵区黄河小浪底森林生态系统定位研究站,利用基于离轴积分腔输出光谱技术的土壤CH4通量自动观测系统,对土壤CH4通量进行连续观测,同步观测林内大气温度和相对湿度、5 cm深处土壤温度和土壤湿度、林内总辐射以及降雨量,分析各因子间的相互关系并确定影响土壤CH4通量的主要因子.结果]表明:(1)在非生长季,刺槐人工林土壤为大气CH4重要的汇,变化范围为-0.15~-2.34 nmol·m-2·s-1 .晴天的林地土壤吸收CH4能力 (-0.78 nmol·m-2·s-1) 明显高于阴天(-0.61 nmol·m-2·s-1)、降雨或降雪天气 (-0.58 nmol·m-2·s-1),而且呈"V"型日际变化特征;在2014年11月-2015年1月,土壤吸收CH4能力逐渐下降,并维持相对较低的水平,直至2015年3月达到最大值 (-2.34 nmol·m-2·s-1);(2)土壤CH4通量与大气温度、5 cm深处土壤温度呈显著负相关,与相对湿度呈正相关;在2015年1月,土壤CH4通量与总辐射呈正相关;(3)在生长末期土壤上冻阶段和冬季土壤冻结阶段,大气温度和相对湿度为影响土壤CH4通量的主要因子;而在生长季初期,主要的影响因子为大气温度和5 cm深处土壤温度.结论]非生长季刺槐林土壤表现为大气CH4的汇,在非生长季初期土壤吸收CH4的能力最弱,主要受大气温度和相对湿度的影响,而在非生长季末期土壤吸收CH4的能力逐渐增加,主要受大气温度和土壤温度的影响.

关 键 词:华北山区  刺槐  人工林  甲烷  非生长季
收稿时间:9/8/2015 12:00:00 AM

Change of Soil CH4 Fluxes of Robinia pseudoacacia Stand During Non-growing Season and the Impact Factors
ZHUANG Jing-jing,ZHANG Jin-song,MENG Ping,ZHENG Ning and LI Jian-xia.Change of Soil CH4 Fluxes of Robinia pseudoacacia Stand During Non-growing Season and the Impact Factors[J].Forest Research,2016,29(2):274-282.
Authors:ZHUANG Jing-jing  ZHANG Jin-song  MENG Ping  ZHENG Ning and LI Jian-xia
Institution:Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 100091, China;Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 100091, China;Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 100091, China;Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 100091, China;Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China;Dagouhe National Forest Farm, Jiyuan 454650, He'nan, China
Abstract:Objective]To investigate the diurnal and seasonal variation of CH4 fluxes in different weather conditions, and explore the effects of soil and meteorological factor on CH4 fluxes in black locust forest soil. Method]The automatic observation system with the near infrared laser and infrared laser analysis composite technology was used to measure the CH4 fluxes of soil in Robinia pseudoacacia L. plantation in low hilly land of north China from October 2014 to April 2015. Meanwhile, the atmospheric temperature and relative humidity, soil temperature and soil water content (5 cm), global radiation and precipitation were concurrently measured. The principal component analysis and stepwise regression analysis were used to analyze the relationship among the factors and determine the main factor of soil CH4 flux. Result](1) The soil of R. pseudoacacia plantation was the important atmospheric CH4 sink during the non-growing season with the range from-0.15 to-2.34 nmol·m-2·s-1. The diurnal variation of CH4 fluxes showed diurnal characteristics of "V-shape",and had higher absorption capacity in a clear day (-0.78 nmol·m-2·s-1) but lower in cloudy (-0.61 nmol·m-2·s-1), rainy or snowy day (-0.58 nmol·m-2·s-1). From November 2014 to January 2015, a gradual decline in the absorption capacity of soil was found. The remained fairly low until the spring when the soil started thawing. The soil CH4 absorption capacity reached the maximum (-2.34 nmol·m-2·s-1) in March 2015. (2) There was a significant negative correlation relationship between soil CH4 fluxes and atmospheric temperature, soil temperature.The soil CH4 fluxes was positively correlated with atmospheric relative humidity. In March and April 2015, the most significant positively correlation was observed between CH4 fluxes and global radiation. (3) The factors of atmospheric temperature and relative humidity became the leading elements in terminal growth and winter while the atmospheric temperature and soil temperature (5 cm in depth) were the primary factors of soil CH4 fluxes in early growing season. Conclusion]The R. pseudoacacia forest soil was the sinks of atmospheric CH4 during non-growing season. The absorption capacity of CH4 was the weakest in early non-growing season, while the absorption capacity of the soil gradually increased at the end of non-growing season. In the early period, the soil CH4 fluxes were mainly affected by atmospheric temperature and relative humidity. In the latter period, the soil CH4 fluxes were influenced by air temperature and soil temperature.
Keywords:hilly areas  Robinia pseudoacacia L    plantation  methane  non-growing season
点击此处可从《林业科学研究》浏览原始摘要信息
点击此处可从《林业科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号