首页 | 本学科首页   官方微博 | 高级检索  
     


Managing traffic-induced soil compaction by using conservation tillage
Authors:C. Sommer  M. Zach
Abstract:The term ‘Konservierende Bodenbearbeitung’ has a somewhat different meaning than conservation tillage as used worldwide. In Germany the term is used not only in relation to the retention of surface residues to reduce erosion but in association with compaction control by carefully timed loosening operations.Field experiments were conducted from 1985 to 1990 on a loamy sand (Dystric-Luvisol) in north-central Germany. The effect of crop rotation-specific soil loosening on some soil physical properties and crop yields was studied in the presence and absence of wheel-induced soil compaction when growing sugar beet, winter wheat, winter barley and a cover crop. Five tillage treatments were studied in a 3-year crop rotation: sugar beet; winter wheat; winter barley; cover crop. These included conventional mouldboard ploughing, conservation tillage with no loosening and conservation tillage where loosening was carried out with a wide blade chisel plough, (1) before winter barley, (2) before the cover crop (mustard or California bluebell) and (3) before winter barley and the cover crop.Wheel-induced compaction decreased the pore space and in most cases eliminated differences due to tillage practice. Pore space on the wheel-tracked plots of the conventional treatment was considerably lower than on the non-wheel-tracked plots. Similar results were obtained for the conservation tillage plots but only where loosening had been carried out within the last 18 months.In summary of the 6 years experiment, there was in general no evidence that conventional tillage was superior to conservation tillage with respect to the yields of sugar beet, winter wheat, or, within certain limits, winter barley on loamy sand.Accordingly, conservation tillage with crop rotation-specific non-inverting soil loosening, promises to be a potential strategy not only with regard to reducing soil erosion, but a programme for reducing costs and alleviating traffic-induced soil compaction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号