首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation
Authors:Yalong Liu  Ping Wang  Genxing Pan  David Crowley  Lianqing Li  Jinwei Zheng  Xuhui Zhang  Jufeng Zheng
Institution:1.Institute of Resource, Ecosystem and Environment of Agriculture,Nanjing Agricultural University,Nanjing,China;2.College of Land and Environment,Shenyang Agricultural University,Shenyang,China;3.Department of Environmental Sciences,University of California Riverside,Riverside,USA
Abstract:

Purpose

Rice paddy soils undergo pedogenesis driven by periodic flooding and drainage cycles that lead to accumulation of organic matter and the stratification of nutrients and oxygen in the soil profile. Here, we examined the effects of continuous rice cultivation on microbial community structures, enzyme activities, and chemical properties for paddy soils along a chronosequence representing 0–700 years of rice cropping in China.

Materials and methods

Changes in the abundance and composition of bacterial and fungal communities were characterized at three depths (0–5, 5–10, and 10–20 cm) in relation to organic carbon, total nitrogen, dissolved organic carbon, microbial biomass carbon/nitrogen, and activities of acid phosphatase, invertase, and urease.

Results and discussion

Both soil organic carbon and total nitrogen increased over time at all three depths, while pH generally decreased. Microbial abundance (bacteria and fungi) and invertase and urease activity significantly increased with the duration of rice cultivation, especially in the surface layer. Fungal abundance and acid phosphatase activity declined with depth, whereas bacterial abundance was highest at the 5–10-cm soil depth. Profiles of the microbial community based on PCR-DGGE of 16S rRNA indicated that the composition of fungal communities was strongly influenced by soil depth, whereas soil bacterial community structures were similar throughout the profile.

Conclusions

Soil bioactivity (microbial abundance and soil enzymes) gradually increased with organic carbon and total nitrogen accumulation under prolonged rice cultivation. Microbial activity decreased with depth, and soil microbial communities were stratified with soil depth. The fungal community was more sensitive than the bacterial community to cultivation age and soil depth. However, the mechanism of fungal community succession with rice cultivation needs further research.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号