首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像处理技术的小麦叶面积指数的提取
引用本文:李 明, 张长利, 房俊龙. 基于图像处理技术的小麦叶面积指数的提取[J]. 农业工程学报, 2010, 26(1): 205-209.
作者姓名:李 明  张长利  房俊龙
作者单位:东北农业大学工程学院,哈尔滨,150030
摘    要:
为了较好地模拟叶面积指数的变化动态,在大田条件下进行试验,获取5个品种5个密度下不同发育期的小麦群体冠层数字图像,并手工测得实际叶面积。通过研究设计了复杂背景下小麦冠层图像叶面指数的有效提取方法,将图像处理得到的叶面积指数数据与实际测得的数据进行拟合建立模型。结果表明:品种、密度和发育期的差异对拟合模型参数影响显著,对模型经过随机抽取样本图像进行假设检验,均能够通过检验。模型的相关系数平方均达到0.86以上,能够实现高精度的小麦冠层叶面积指数的估测。

关 键 词:图像处理  作物  提取  叶面积指数  拟合模型
收稿时间:2008-11-24
修稿时间:2009-11-30

Extraction of leaf area index of wheat based on image processing technique
Extraction of leaf area index of wheat based on image processing technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 205-209.
Authors:Li Ming  Zhang Changli  Fang Junlong
Affiliation:College of Engineering/a>;Northeast Agriculture University/a>;Harbin 150030/a>;China
Abstract:
For better simulating the dynamics of leaf area index (LAI), an experiment under field conditions, with five varieties and five densities at different stages, was carried out. The digital images of wheat groups canopy were obtained, , and the actual leaf area was manually measured. An effective extraction method of wheat LAI under complex background was designed. Simulation models between data of image processing and actual leaf area were established. Results showed that the model parameters were significantly affected by the differences of variety, density and growing stages. Hypothetical tests of the models were carried out by random extracting sample images, and all of them were able to meet the requirements of test. Square of the correlation coefficient of all models is higher than 0.86. This can achieve the higher precision estimation of wheat canopy LAI.
Keywords:image processing   crops   extraction   leaf area index   fitting models
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号