首页 | 本学科首页   官方微博 | 高级检索  
     

近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量
引用本文:李伟,张书慧,张倩,董朝闻,张守勤. 近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J]. 农业工程学报, 2007, 23(1): 55-59
作者姓名:李伟  张书慧  张倩  董朝闻  张守勤
作者单位:1. 吉林大学生物与农业工程学院,长春,130025
2. 东风汽车有限公司,商用车研发中心,十堰,442001
基金项目:国家高技术研究发展计划(863计划)
摘    要:
运用偏最小二乘法(PLS)和人工神经网络(ANN)方法分别建立了0.9 mm筛分风干黑土土壤碱解氮、速效磷和速效钾含量预测的近红外光谱(NIRS)分析模型。使用偏最小二乘算法建立的碱解氮、速效磷和速效钾校正模型的决定系数R2分别为0.9520、0.8714和0.7300,平均相对误差分别为3.42%、13.40%和7.40%。人工神经网络方法建立的碱解氮、速效磷和速效钾校正模型的决定系数分别为0.9563、0.9493和0.9522,相对误差分别为2.67%、6.48%和2.27%,测试集仿真的相对误差分别为5.44%、16.65%和7.87%。结果表明,人工神经网络方法所建立的校正模型均优于偏最小二乘法所建模型;用近红外光谱分析法预测土壤碱解氮含量是可行的,而速效磷、速效钾模型的测试集样品仿真的相对误差较大,其预测可行性还需做进一步研究。

关 键 词:近红外光谱分析  神经网络  偏最小二乘法  土壤养分
文章编号:1002-6819(2007)1-0055-05
收稿时间:2005-12-31
修稿时间:2005-12-31

Rapid prediction of available N, P and K content in soil using near-infrared reflectance spectroscopy
Li Wei,Zhang Shuhui,Zhang Qian,Dong Chaowen and Zhang Shouqin. Rapid prediction of available N, P and K content in soil using near-infrared reflectance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(1): 55-59
Authors:Li Wei  Zhang Shuhui  Zhang Qian  Dong Chaowen  Zhang Shouqin
Affiliation:College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China;College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China;College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China;Commercial Vehicle Research and Development Center, Dongfeng Motor Co.,Ltd, Shiyan 442001, China;College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
Abstract:
The calibration models were established using Partial Least Squares(PLS) and Artificial neural network(ANN) techniques to relate NIR spectral data to the concentrations of available N, available P and available K in 0.9 mm dried soil. Coefficients of determination(R2) between results from chemical analysis and NIR-predicted concentrations, based on calibrations of PLS, are 0.9520 for available N, 0.8714 for available P and 0.7300 for available K, and the mean relative errors of PLS models are 3.42%, 13.40% and 7.40%, respectively. Coefficients of determination, based on calibrations of ANN, are 0.9563 for available N, 0.9493 for available P and 0.9522 for available K, the mean relative errors of ANN models are 2.67%, 6.48% and 2.27%, respectively, and the mean relative errors of test samples are 5.44%, 16.65% and 7.87%, respectively. The results show that ANN technique is better than PLS in NIRS analysis, and the NIRS method is feasible to predict the concentration of available N, but the mean relative errors of test samples for available P and available K are high relatively, therefore, further study should be done in this field.
Keywords:Near-Infrared Reflectance Spectroscopy(NIRS)   Artificial Neural Network(ANN)   Partial Least Square(PLS)   soil nutrient
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号