首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-means动态聚类的鸢乌贼角质颚模式识别
引用本文:郑芯瑜,刘必林,孔祥洪,王雪辉. 基于K-means动态聚类的鸢乌贼角质颚模式识别[J]. 渔业科学进展, 2021, 42(4): 64-72
作者姓名:郑芯瑜  刘必林  孔祥洪  王雪辉
作者单位:上海海洋大学海洋科学学院 上海 201306;上海海洋大学海洋科学学院 上海 201306;大洋渔业资源可持续开发教育部重点实验室 上海海洋大学国家远洋渔业工程技术研究中心 农业农村部大洋渔业开发重点实验室 农业农村部大洋渔业资源环境科学观测实验站 上海 201306;中国水产科学研究院南海水产研究所 广东 广州 510300
基金项目:国家重点研发计划;国家自然科学基金;上海市浦江人才计划;上海市高校特聘教授东方学者岗位计划;上海市科技创新行动计划
摘    要:
本研究采用K-means动态聚类算法,对2014-2019年间采集于西北印度洋、热带东太平洋、中国南海的鸢乌贼(Sthenoteuthis oualaniensis)样本的角质颚进行识别.基于K-means动态聚类算法能够很好地区分来自3个海区的鸢乌贼,对数据进行z-score标准化后,任选2维角质颚形态学参数以曼哈顿...

关 键 词:鸢乌贼  角质颚  模式识别  曼哈顿距离  欧氏距离
收稿时间:2020-03-15
修稿时间:2020-04-08

Pattern of recognition beaks in Sthenoteuthis oualaniensis based on K-means dynamic clustering
ZHENG Xinyu,LIU Bilin,KONG Xianghong,WANG Xuehui. Pattern of recognition beaks in Sthenoteuthis oualaniensis based on K-means dynamic clustering[J]. Progress in Fishery Sciences, 2021, 42(4): 64-72
Authors:ZHENG Xinyu  LIU Bilin  KONG Xianghong  WANG Xuehui
Affiliation:College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, National Distant-Water Fisheries Engineering Research Center, Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; South China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
Abstract:
Cluster analysis has been widely used for pattern recognition, machine learning, and in other fields. The K-means dynamic clustering algorithm is simple and efficient, which is why it is one of the most commonly used methods of cluster analysis. The beak of cephalopods, comprising hard tissue, has been widely used to determine species and identify populations owing to its stable structure, corrosion resistance, easily observed growth lines, and abundant characteristic information, causing it to have great application prospects. In this study, the K-means dynamic clustering algorithm was used on 150 pairs of Sthenoteuthis oualaniensis beaks within the mantle length range of 120~200 mm. Samples were collected from the northwest Indian Ocean, the tropical eastern Pacific Ocean and the South China Sea from 2014 to 2019. The results showed that S. oualaniensis from the northwest Indian Ocean had the largest beaks, followed by the tropical eastern Pacific Ocean, and those in the South China Sea. The K-means dynamic clustering algorithm showed that S. oualaniensis from the three areas can be well distinguished. We used z-scores to normalize the data the created a 2D beak morphological parameter matrix to randomize the data before we conducted a K-means dynamic clustering analysis with Manhattan distance and Euclidean distance. The total correct discrimination rate was 86.7% and 88.7%, respectively. This study also identified that the geographic regional differences in beak morphology are unlikely to be due to sampling bias. From the location of the clustering center, we concluded that the Manhattan and Euclidean distance algorithms and outlying points will generate deviations from the clustering center. The K-means dynamic clustering algorithm for beaks of the S. oualaniensis has great reference value. We identified improvements that optimize the K-means algorithm to expand capability for universal use. These improvements and a retrieval system will improve our capabilities to identify S. oualaniensis species.
Keywords:Sthenoteuthis oualaniensis   Beak   Pattern of recognition   Manhattan distance   Euclidean distance
本文献已被 万方数据 等数据库收录!
点击此处可从《渔业科学进展》浏览原始摘要信息
点击此处可从《渔业科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号