首页 | 本学科首页   官方微博 | 高级检索  
     


5‐Aminolevulinic Acid Activates Antioxidative Defence System and Seedling Growth in Brassica napus L. under Water‐Deficit Stress
Authors:D. Liu  Z. F. Pei  M. S. Naeem  D. F. Ming  H. B. Liu  F. Khan  W. J. Zhou
Affiliation:Institute of Crop Science, Zhejiang University, Hangzhou, China
Abstract:
The present study assesses the effects of 5‐aminolevulinic acid (ALA, 0, 0.1, 1 and 10 mg l?1) on the growth of oilseed rape (Brassica napus L. cv. ZS758) seedlings under water‐deficit stress induced by polyethylene glycol (PEG 6000, 0 and ?0.3 MPa). Water‐deficit stress imposed negative effects on seedling growth by reducing shoot biomass, cotyledon water potential, chlorophyll content and non‐enzymatic antioxidants (glutathione and ascorbic acid) levels. On the other hand, water‐deficit stress enhanced the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, enzymatic antioxidants activities, reduced/oxidized glutathione ratio (GSH/GSSG) and reduced/oxidized ascorbic acid (ASA/DHA) ratio in seedlings. Application of ALA at lower dosages (0.1 and 1 mg l?1) improved shoot weight and chlorophyll contents, and decreased MDA in rape seedlings, whereas moderately higher dosage of ALA (10 mg l?1) hampered the growth. The study also indicated that 1 mg l?1 ALA improved chlorophyll content, but reduced MDA content and ROS production significantly under water‐deficit stress. Lower dosages of ALA (0.1 and 1 mg l?1) also enhanced GSH/GSSG and ASA/DHA as compared to the seedlings under water‐deficit stress. The antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase and superoxide dismutase) enhanced their activities remarkably with 1 mg l?1 ALA treatment under water‐deficit stress. It was also revealed that 1 mg l?1 ALA treatment alone induced the expression of APX, CAT and GR substantially and under water‐deficit stress conditions ALA treatment could induce the expression of POD, CAT and GR to a certain degree. These results indicated that 0.1–1 mg l?1 ALA could enhance the water‐deficit stress tolerance of oilseed seedlings through improving the biomass accumulation, maintaining a relative high ratio of GSH/GSSG and ASA/DHA, enhancing the activities of the specific antioxidant enzymes and inducing the expression of the specific antioxidant enzyme genes.
Keywords:5‐aminolevulinic acid  antioxidants  Brassica napus  reactive oxygen species  water‐deficit stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号