首页 | 本学科首页   官方微博 | 高级检索  
     

近红外反射光谱法测定厚朴酚类物质
引用本文:郁重彦,童再康,黄华宏,朱玉球. 近红外反射光谱法测定厚朴酚类物质[J]. 浙江林学院学报, 2007, 24(5): 544-549
作者姓名:郁重彦  童再康  黄华宏  朱玉球
作者单位:浙江林学院,林业与生物技术学院,浙江,临安,311300
摘    要:为了建立厚朴Magnolia officinalis药材品质快速有效的评价方法,采用近红外反射光谱技术测定厚朴酚及和厚朴酚的质量分数。通过在全波长条件下,运用不同数学预处理、光谱散射校正和统计方法对来发展定标回归方程,其中统计方法包括偏最小二乘法(PLS)、修正的偏最小二乘法回归分析法(MPLS)和主成分回归法(PCR)。在对比分析的基础上,得到最佳的数学方法为"3,6,6,1"组合,光谱散射校正方法为SNV D或SNV,统计方法为MPLS,厚朴酚类物质的定标决定系数RSQ均达到了0.97以上。该定标模型的外部独立检验相关系数也均达0.95以上。用近红外反射光谱技术测定厚朴药材酚类物质质量分数具有与化学法相近的准确性,可在实践中应用。图2表5参11

关 键 词:植物学  近红外反射光谱  厚朴  偏最小二乘法  酚类物质  中药材分析
文章编号:1000-5692(2007)05-0544-06
收稿时间:2007-03-28
修稿时间:2007-06-29

Quantification of phenolic compound in Magnolia officinalis herb by near infrared reflectance spectroscopy
YU Chong-yan,TONG Zai-kang,HUANG Hua-hong,ZHU Yu-qiu. Quantification of phenolic compound in Magnolia officinalis herb by near infrared reflectance spectroscopy[J]. Journal of Zhejiang Forestry College, 2007, 24(5): 544-549
Authors:YU Chong-yan  TONG Zai-kang  HUANG Hua-hong  ZHU Yu-qiu
Abstract:To establish evaluating the quality of Magnolia officinalis quickly and efficiently,this paper determined the quantification method of phenolic compound by using near infrared reflectance spectroscopy.Under the full wavelength,different mathematics and statistics were compared in the calibration.The statistics methods include partial least squares(PLS),modified PLS and principal component regression(PCR).The best mathematic method was "3,6,6,1",scatter correction method was transformation of standard normal variate(SNV) detrending(D) or SNV and statistic method was modified PLS.The correlation coefficient of calibration was above 0.97.The correlation coefficient of exterior calibration was above 0.95.This indicates that near infrared reflectance spectorscopy(NIRS) is comparable to chemical methods in both accuracy and prediction and is reliable in practical application.
Keywords:botany  near infrared reflectance spectroscopy  Magnolia officinalis  PLS algorithm  phenolic compounds  analysis of herb medicne
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号