首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought
Institution:1. College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China;2. Huanjiang Observation and Research Station for Karst Ecosystem, Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;1. Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada;2. Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
Abstract:Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号