首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of field atrazine persistence in an allophanic soil with Opus2
Authors:Müller Karin  Smith Roger E  James Trevor K  Holland Patrick T  Rahman Anis
Institution:AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand. karin.mueller@agresearch.co.nz
Abstract:A modified version of the model Opus was applied to measurements of soil water dynamics and atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) persistence in a Bruntwood silt loam soil (Haplic Andosol, FAO system) in Hamilton, New Zealand. The modified model, Opus2, is briefly described and parameter estimation for the simulations is discussed. Soil water dynamics were more accurately described by applying measured soil hydraulic properties than by estimating them using pedotransfer functions. A parameter sensitivity analysis revealed that degradation was the most relevant process in simulating pesticide behaviour by Opus2. The Arrhenius equation incorporated in Opus2 did not correctly describe the effect of temperature on degradation rates obtained at 10, 20 and 30 degrees C. However, as the Arrhenius coefficient is a very sensitive parameter and soil temperature variation was relatively narrow in the field, the Arrhenius coefficient was approximated from the laboratory study. The simulation results obtained were superior to modelling at constant temperature. Field measured persistence of atrazine in the topsoil was underpredicted using the half-life determined in the laboratory at 10 degrees C. Modelling with a lag phase followed by accelerated degradation by use of a sigmoidal degradation equation in Opus2 significantly improved the modelling results. Nevertheless, degradation processes in the laboratory under controlled conditions did not accurately represent field dissipation, however well the laboratory degradation data could be described by simple kinetic equations. The study indicates the importance of improving field techniques for measuring degradation, and developing laboratory protocols that yield degradation data that are more representative of pesticide dynamics in field soils.
Keywords:atrazine  degradation  leaching  parameterisation  Opus2
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号