首页 | 本学科首页   官方微博 | 高级检索  
     

基于GC-Cascade R-CNN的梨叶病斑计数方法
引用本文:薛卫,程润华,康亚龙,黄新忠,徐阳春,董彩霞. 基于GC-Cascade R-CNN的梨叶病斑计数方法[J]. 农业机械学报, 2022, 53(5): 237-245
作者姓名:薛卫  程润华  康亚龙  黄新忠  徐阳春  董彩霞
作者单位:南京农业大学;福建农业科学院
基金项目:财政部和农业农村部:国家现代农业产业技术体系项目(CARS-28)
摘    要:为提高梨叶片病害发生程度诊断的效率和准确性,本文提出基于全局上下文级联R-CNN网络(Global context Cascade R-CNN,GC-Cascade R-CNN)的梨叶病斑计数方法。模型的主干特征提取网络嵌入全局上下文模块(Global context feature model, GC-Model),建立有效的长距离和通道依赖,增强目标特征信息。引入特征金字塔网络(Feature pyramid network, FPN)融合浅层细节特征和深层丰富语义特征。使用ROI Align替换ROI Pooling进行区域特征聚集,增强目标特征表达。最后利用多层级联网络对目标区域进行边框回归和分类,完成病斑计数任务。在梨叶病斑图像测试中,模型的各类病斑平均精确率均值(Mean average precision, mAP)达89.4%,检测单幅图像平均耗时为0.347 s。结果表明,模型能够有效地从梨叶片病害图像中检测出多类病斑目标,尤其对叶片炭疽病斑检测效果提升显著;不同种类梨叶片病害病斑计数值与真实值回归实验决定系数R2均大于0.92,表明模型病斑计数...

关 键 词:梨树叶片  病斑计数  级联网络  全局上下文特征  注意力机制  小目标检测
收稿时间:2021-05-12

Pear Leaf Disease Spot Counting Method Based on GC-Cascade R-CNN
XUE Wei,CHENG Runhu,KANG Yalong,HUANG Xinzhong,XU Yangchun,DONG Caixia. Pear Leaf Disease Spot Counting Method Based on GC-Cascade R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 237-245
Authors:XUE Wei  CHENG Runhu  KANG Yalong  HUANG Xinzhong  XU Yangchun  DONG Caixia
Affiliation:Nanjing Agricultural University;Fujian Academy of Agriculture Sciences
Abstract:In order to improve the efficiency and accuracy of pear leaf disease degree diagnosis, a pear leaf disease spot counting method was proposed based on global context Cascade region-based convolutional neural network (GC-Cascade R-CNN). The backbone feature extraction network of the model was embedded in a global context feature model (GC-Model), to establish effective long range dependency and channel dependency for enhancing the feature information. The model fused shallow detail features and deep rich semantic features by feature pyramid networks (FPN). ROI Align was used to replace ROI Pooling for regional feature aggregation and enhance the target feature representation. Bounding box regression and classification of target regions were performed by using multilayer Cascade networks to complete the disease spot counting task. In the test of pear leaf disease images, the mean average precision (mAP) of the model reached 89.4% for all types of disease spots, and a single image processing average time of 0.347s, ensuring real-time operation while improving detection accuracy. The results showed that the model could effectively detect multiple types of disease spot targets from pear leaf disease images, especially for the detection of anthracnose spots;and the coefficient of determination R2 of the regression of disease spot counting values and true values of different kinds of pear leaf diseases were all greater than 0.92, indicating that the model had high accuracy of disease spot counting. This study solved the difficulty of pear leaves disease degree diagnosis, and provided a new idea for the diagnosis of pear disease conditions and symptoms in automated agricultural production.
Keywords:pear leaf  disease spot counting  Cascade R-CNN  global context feature  attention mechanism  small object detection
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号