首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland
Authors:Tarah S Sullivan  Mary E Stromberger  Mark W Paschke
Institution:a Department of Soil and Crop Sciences, 1170 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
b Department of Forest, Rangeland and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA
Abstract:Approximately 70,150 dry Mg of biosolids from over 450 wastewater treatment facilities are applied to the semi-arid rangelands of Colorado every year. Research on semi-arid grassland responses to biosolids has become vital to better understand ecosystem dynamics and develop effective biosolids management strategies. The objectives of this study were to determine the long-term (∼12 years) effects of a single biosolids application, and the short-term (∼2 years) effects of a repeated application, on plant and microbial community structure in a semi-arid grassland soil. Specific attention was paid to arbuscular mycorrhizal fungi (AMF) and linkages between shifts in plant and soil microbial community structures. Biosolids were surface applied to experimental plots once in 1991 (long-term plots) and again to short-term plots in 2002 at rates of 0, 2.5, 5, 10, 21, or 30 Mg ha−1. Vegetation (species richness and above-ground biomass), soil chemistry (pH, EC, total C, total N, and extractable P, NO3-N, and NH4-N), and soil microbial community structure ester-linked fatty acid methyl esters (EL-FAMEs)], were characterized to assess impacts of biosolids on the ecosystem. Soil chemistry was significantly affected and shifts in both soil microbial and plant community structure were observed with treatment. In both years, the EL-FAME biomarker for AMF decreased with increasing application rate of biosolids; principal components analysis of EL-FAME data yielded shifts in the structure of the microbial communities with treatment primarily related to the relative abundance of the AMF specific biomarker. Significant (p≤0.05) correlations existed among biomarkers for Gram-negative and Gram-positive bacteria, AMF and specific soil chemical parameters and individual plant species' biomass. The AMF biomarker was positively correlated with biomass of the dominant native grass species blue grama (Bouteloua gracilis Willd. ex Kunth] Lagasca ex Griffiths) and was negatively correlated with western wheatgrass (Agropyron smithii Rydb.) biomass. This study demonstrated that applications of biosolids at relatively low rates can have significant long-term effects on soil chemistry, soil microbial community structure, and plant community species richness and structure in the semi-arid grasslands of northern Colorado. Reduced AMF and parallel shifts in the soil microbial community structure and the plant community structure require further investigation to determine precisely the sequence of influence and resulting ecosystem dynamics.
Keywords:Biosolids  Grassland soil  Soil microbial community  Arbuscular mycorrhizae  FAME
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号