首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compound-specific δC and δH analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology
Authors:Evelyn Krull  Dirk Sachse  Andrej Thiele
Institution:a CSIRO Land & Water and CRC for Greenhouse Accounting, Glen Osmond SA 5064, Australia
b Max-Planck Institute for Biogeochemistry, Jena, Germany
Abstract:Here we present δ13C and δ2H data of long-chained, even-numbered (C27-C31) n-alkanes from C3 (trees) and C4 (grasses) plants and from the corresponding soils from a grassland-woodland vegetation sequence in central Queensland, Australia. Our data show that δ13C values of the C4 grassland species were heavier relative to those of C3 tree species from the woodland (Acacia leaves) and woody grassland (Atalaya leaves). However, n-alkanes from the C4 grasses had lighter δ2H values relative to the Acacia leaves, but showed no significant difference in δ2H values when compared with C3 Atalaya leaves. These results differ from those of previous studies, showing that C4 grasses had heavier δ2H values relative to C3 grasses and trees. Those observations have been explained by C4 plants accessing the more evaporation-influenced and isotopically heavier surface water and tree roots sourcing deeper, isotopically lighter soil water (“Two-layered soil-water system”). By comparison, our data suggest that ecosystem changes (vegetation “thickening”) can significantly alter the soil hydrological characteristics. This is shown by the heavier δ2H values in the woodland soil compared with lighter δ2H values in the grassland soil, implying that the recent vegetation change (increased tree biomass) in the woodland had altered soil hydrological conditions. Estimated δ2H values of the source-water for vegetation in the grassland and woodland showed that both trees and grasses in open settings accessed water with lighter δ2H values (avg. −46‰) compared with water accessed by trees in the woodland vegetation (avg. −7‰). These data suggest that in semi-arid environments the “two-layer” soil water concept might not apply. Furthermore, our data indicate that compound-specific δ2H and δ13C analyses of n-alkanes from soil organic matter can be used to successfully differentiate between water sources of different vegetation types (grasses versus trees) in natural ecosystems.
Keywords:Compound-specific δ2H and δ13C  Soil organic matter  Vegetation thickening  n-alkanes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号