首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers
Authors:Jeong J  Kwon E G  Im S K  Seo K S  Baik M
Institution:Department of Molecular Biotechnology, Chonnam National University, Gwangju, Republic of Korea.
Abstract:Intramuscular fat (IMF) in cattle is an important component of traits that influence meat quality. We measured carcass characteristics and gene expression in Korean steers to clarify the molecular mechanism(s) underlying IMF deposition in LM tissue by determining the correlation between IMF content and gene expression abundance and by developing models to predict IMF content using gene expression abundance. The deposition of IMF is determined by a balance between fat deposition and fat removal in the LM. We measured mRNA abundance of lipid metabolic genes including lipogenesis acetyl CoA carboxylase (ACC), fatty acid synthase (FASN)], fatty lipid uptake lipoprotein lipase (LPL), fatty acid translocase (CD36), fatty acid transport protein 1 (FATP1)], fatty acid esterification glycerol-3-phosphate acyltransferase 1 (GPAT1), acylglycerol phosphate acyltransferase 1 (AGPAT1), diacylglycerol acyltransferase 1 (DGAT1), DGAT2], lipolysis adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL)], and fatty acid oxidation carnitine palmitoyl transferase 1B, very long-chain acyl-CoA dehydrogenase (VLCAD), medium-chain acyl-CoA dehydrogenase (MCAD)] in the LM. The mRNA abundance of the GPAT1 gene showed the greatest correlation (r = 0.74; P < 0.001) with IMF content among 9 fat deposition genes. The gene expression abundance of other fat deposition genes including ACC, FASN, LPL, CD36, FATP1, AGPAT1, DGAT1, and DGAT2 also exhibited significant positive correlations (P < 0.05) with IMF content in the LM. Conversely, ATGL mRNA abundance showed the greatest negative correlation (r = -0.68; P < 0.001) with IMF content in the LM among 6 fat removal genes. The expression of other fat removal genes including MGL, VLCAD, and MCAD showed significant negative correlations (P < 0.05) with IMF content. Our findings show that the combined effects of increases in lipogenesis, fatty acid uptake, fatty acid esterification, and of decreases in lipolysis and fatty acid oxidation contribute to increasing IMF deposition in Korean steers. The multiple regression analysis revealed that the mRNA abundance of the GPAT1 gene in the LM was the first major variable predicting IMF content (54%) among 15 lipid metabolic genes. The second was mRNA abundance of ATGL (11%). In conclusion, these results suggest that GPAT1 and ATGL genes could be used as genetic markers to predict IMF deposition in the LM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号