首页 | 本学科首页   官方微博 | 高级检索  
     


Co-culture of osteocytes and neurons on a unique patterned surface
Authors:Boggs Mary E  Thompson William R  Farach-Carson Mary C  Duncan Randall L  Beebe Thomas P
Affiliation:University of Delaware, Department of Biological Science, Newark, 19716, USA.
Abstract:
Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLO-Y4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 μm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号