A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest |
| |
Authors: | Guilherme M. Chaer David D. Myrold |
| |
Affiliation: | a Embrapa Agrobiologia, Rodovia BR-465, km 7, Caixa Postal 74505, Seropédica, RJ 23890, Brazil b Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA |
| |
Abstract: | Recent studies have suggested that the organic matter contents of undisturbed soils (under natural vegetation) are in equilibrium with biological and biochemical properties. Accordingly, we hypothesised that such equilibria should be disrupted when soils are subjected to disturbance or stress, and that measurement of this disruption can be expressed mathematically and used as a soil quality index. In this study, we evaluated these hypotheses in soils from the H.J. Andrews Experimental Forest in Oregon. Both O and A horizons were sampled from nine sites in Spring 2005 and Fall 2006. Soil samples were analyzed for enzyme activities (phosphatase, β-glucosidase, laccase, N-acetyl-glucosaminidase, protease and urease), and other biological and chemical properties including N-mineralization, respiration, microbial biomass C (MBC), soil organic carbon (SOC) and total nitrogen content. In addition, soil samples from one old-growth site were manipulated in the laboratory to either simulate chemical stresses (Cu addition or pH alteration) or physical disturbances (wet-dry or freeze-thaw cycles). The results showed variation in biological and biochemical soil properties that were closely correlated with SOC. Multiple regression analysis of SOC levels against all soil properties showed that a model containing only MBC and phosphatase activity could account for 97% of the SOC variation among the sites. The model fit was independent of spatial and temporal variations because covariates such as site, stand age, sampling date, and soil horizon were found to be not statistically significant. Although the application of stress/disturbance treatments inconsistently affected most of the individual biochemical properties, in contrast, the ratio of soil C predicted by the model (Cp), and soil C measured (Cm) was consistently reduced in soils submitted to at least one level of stress and disturbance treatments. In addition, Cp/Cm was more affected in soils submitted to wet-dry cycles and Cu contamination than to freeze-thaw cycles or shifts in soil pH. Our results confirm previous evidence of a biochemical balance in high quality undisturbed soils, and that this balance is disrupted when the soil is submitted to disturbances or placed under stress conditions. The Cp/Cm ratio provides a simple reference value against which the degrading effects of pollutants or management practices on soil quality can be assessed. |
| |
Keywords: | Biochemical soil properties Biochemical index Soil enzymes Soil stress Soil disturbance Oregon forest soils |
本文献已被 ScienceDirect 等数据库收录! |
|