首页 | 本学科首页   官方微博 | 高级检索  
     

基于漫反射光谱的茶园土壤硝态氮检测
引用本文:胡永光,李萍萍,吴才聪,陈 斌. 基于漫反射光谱的茶园土壤硝态氮检测[J]. 农业工程学报, 2009, 25(13): 240-244
作者姓名:胡永光  李萍萍  吴才聪  陈 斌
作者单位:江苏大学现代农业装备与技术省部共建教育部重点实验室/江苏省重点实验室,镇江 212013;江苏大学现代农业装备与技术省部共建教育部重点实验室/江苏省重点实验室,镇江 212013;1.江苏大学现代农业装备与技术省部共建教育部重点实验室/江苏省重点实验室,镇江 212013; 2.北京大学遥感与地理信息系统研究所,北京 100871;江苏大学现代农业装备与技术省部共建教育部重点实验室/江苏省重点实验室,镇江 212013
基金项目:国家科技支撑计划项目(2006BAD11A13);现代农业装备与技术重点实验室开放基金(NZ200602);江苏省科技创新服务机构建设项目(BM2007329)
摘    要:
该文研究了充分利用土壤漫反射光谱在可见-近红外波段的有效信息,研究快速准确检测土壤硝态氮含量的新方法。试验选取89个风干土壤样本,经粉碎过直径1 mm筛孔后,使用 FieldSpec 3便携式光谱仪(光谱波长范围:400~2 500 nm),获取其漫反射光谱。检查各土样的原始光谱的有效性并进行平均,经偏最小二乘法partial least squares(PLS)聚类分析后,选取其中的63个样本构成校正集建立模型,10个样本构成预测集进行模型验证。通过一阶微分与滑动平均滤波相结合的预处理方法,用15个主成分建立的主成分+神经网络模型为最好,其校正模型的回判相关系数为0.9908,均方根误差(RMSEC)为1.4528,预测模型的相关系数为0.7179。研究结果表明,利用可见-近红外光谱技术可以准确地检测茶园土壤硝态氮含量。

关 键 词:近红外光谱,模型,反射,神经网络,土壤硝态氮
收稿时间:2009-06-30
修稿时间:2009-09-11

Soil nitrate nitrogen sensing for tea garden based on diffuse reflectance spectroscopy
Hu Yongguang,Li Pingping,Wu Caicong and Chen Bin. Soil nitrate nitrogen sensing for tea garden based on diffuse reflectance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(13): 240-244
Authors:Hu Yongguang  Li Pingping  Wu Caicong  Chen Bin
Affiliation:1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China,1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China,1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China; 2. Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China and 1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education and Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
Abstract:
Authors researched the method of soil nitrate nitrogen content determination with diffuse reflectance spectroscopy for its rapidness and accuracy. The portable spectroradiometer, FieldSpec 3 with a full spectral wavelength of 400-2500 nm, was used to scan diffuse reflectance spectra of soil samples. Eighty-nine soil samples were selected according to different soil fertility, depth and sites, which covered wide range of nitrate nitrogen content. Soil samples were air-dried and sieved through 1-mm screen holes after grinding. Data validity of original spectra was checked and averaged. Sixty-three samples were used to establish the calibration model with the methods of standing-wave ratio after the cluster analysis by partial least squares. Ten samples were used to establish the prediction set and the calibration model was validated. After being preprocessed by the combination of first-order derivative and moving average filter, the calibration model with fifteen principal component factors was regarded as the best with the algorithm of principal constituent analysis and artificial neural networks, and the correlation coefficient of the calibration model was 0.9908. The root mean square error of calibration was 1.4528. The correlation coefficient between predicted values and real values was 0.7179. The results show that soil nitrate nitrogen content can be determined precisely with visible-near infrared spectra.
Keywords:near infrared spectroscopy   models   reflection   neural networks   soil nitrate nitrogen
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号