首页 | 本学科首页   官方微博 | 高级检索  
     

一类两种群都染病的捕食—食饵模型分析
引用本文:范城玮,刘贤宁. 一类两种群都染病的捕食—食饵模型分析[J]. 西南大学学报(自然科学版), 2018, 40(5): 94-100
作者姓名:范城玮  刘贤宁
作者单位:西南大学数学与统计学院
基金项目:国家自然科学基金项目(11671327)
摘    要:
建立了一类两种群都染病的捕食—食饵模型,证明了解的正性和最终有界性;利用Hurwitz判据,得到了边界平衡点局部渐近稳定的充要条件并发现系统的正平衡点是不稳定的;通过构造适当的Lyapunov函数,给出了边界平衡点全局稳定的充分条件.

关 键 词:捕食—食饵模型; Hurwitz判据; Lyapunov函数; 全局渐近稳定性;

A Predator-Prey Mathematical Model with Both the Populations Affected by Diseases
FAN Cheng-wei,LIU Xian-ning. A Predator-Prey Mathematical Model with Both the Populations Affected by Diseases[J]. Journal of southwest university (Natural science edition), 2018, 40(5): 94-100
Authors:FAN Cheng-wei  LIU Xian-ning
Abstract:
In this paper, a predator-prey mathematical model with both the populations affected by diseases is proposed. The positivity and ultimate boundedness of the solution is proved. The necessary and sufficient conditions for the locally asymptotic stability of the boundary equilibrium are established by using Hurwitz criterion. And the positive equilibrium point is proved to be always unstable. The sufficient conditions for the globally asymptotic stability of the boundary equilibrium are given by constructing some reasonable Lyapunov functions.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《西南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号