首页 | 本学科首页   官方微博 | 高级检索  
     

喀斯特地区土地分类方法研究
作者姓名:何朝霞
作者单位:长江大学工程技术学院,湖北荆州,434023
基金项目:湖北省教育厅2016年度科学研究计划指导性项目
摘    要:[目的]寻找喀斯特地区土地最优分类方法。[方法]选取覆盖柳州市的美国陆地卫星的Landsat-5TM数字影像(2011年),采用最大似然、神经网络和支持向量机(SVM)3种分类方法,对研究区域的土地进行分类,比较分类后的混淆矩阵,分别求出3种分类结果的总体正确率和Kappa系数。[结果]3种分类方法的总体正确率都在90%以上,Kappa系数也较高;SVM分类方法的总体分类正确率和Kappa系数最高,优于神经网络、最大似然法分类。[结论]SVM分类方法可提高喀斯特地区土地利用信息遥感分类的精度,为后期有效地动态监测喀斯特地区土地利用的变化奠定了基础。

关 键 词:最大似然  神经网络  支持向量机  土地分类  精度
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号