首页 | 本学科首页   官方微博 | 高级检索  
     

求解凸二次规划的一种改进的原-对偶内点算法
引用本文:杨春艳,雍龙泉. 求解凸二次规划的一种改进的原-对偶内点算法[J]. 长江大学学报, 2009, 0(2): 126-128
作者姓名:杨春艳  雍龙泉
作者单位:[1]银川大学数学系,宁夏银川750105 [2]陕西理工学院数学系,陕西汉中723001
摘    要:基于牛顿方向,给出了求解凸二次规划问题的改进原对偶可行内点算法。若获得算法的初始可行内点,则该算法经过多次迭代之后收敛到原问题的一个最优解。数值试验表明了该算法的有效性。

关 键 词:凸二次规划  原对偶可行内点算法  多项式复杂性

Improved Primal-dual Feasible Interior Point Algorithm for Convex Quadratic Programming
YANG Chun-YanYONG Long-Quan. Improved Primal-dual Feasible Interior Point Algorithm for Convex Quadratic Programming[J]. Journal of Yangtze University, 2009, 0(2): 126-128
Authors:YANG Chun-YanYONG Long-Quan
Affiliation:YANG Chun-Yan(Yinchuan University,Yinchuan 750105)YONG Long-Quan(Shaanxi University of Technology,Hanzhong 723001)
Abstract:In this paper we analyzed the most common algorithms to quadratic programming and indicated difficulty in studying this problem.Based on above,we presented an improved primal-dual feasible interior point algorithm for convex quadratic programming by means of the Newton direction.It is showed that if a strictly feasible starting point is available,then the algorithms have the polynomial complexity.Numerical results are demonstrated very good computational performance on convex quadratic programming.
Keywords:convex quadratic programming  primal-dual interior point algorithm  polynomial complexity  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号