首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的土壤含水量预报模型
引用本文:郭庆春,何振芳. 基于人工神经网络的土壤含水量预报模型[J]. 山西农业科学, 2012, 40(8): 892-895
作者姓名:郭庆春  何振芳
作者单位:1. 陕西广播电视大学教务处,陕西西安,710068
2. 中国科学院寒区旱区环境与工程研究所,甘肃兰州,730000
基金项目:国家重点基础研究发展计划(973计划)项目,国家自然科学基金项目,全国教育科学“十二五”规划单位资助课题,2011年度陕西省高等继续教育教学改革研究重点项目,2011年度陕西广播电视大学课题,陕西省教科所2010年度规划课题
摘    要:土壤水分含量是影响作物生长的重要因素,精确预测技术对水资源的合理利用与管理具有重要的指导意义。土壤水分运动是一个复杂的时间序列系统,其变化与区域气候条件和生态环境密切相关,具有明显的随机性波动。利用人工神经网络的方法对河南驻马店地区的土壤含水量进行预报,利用表层土壤含水量资料计算了一些与深层土壤含水量相关的预报因子,用以建立驻马店地区深层土壤含水量的神经网络预报模型,并应用独立样本进行了初步的模拟预报检验。结果表明,预报模型取得了令人满意的效果,应用神经网络的方法预报深层土壤含水量是可行的。

关 键 词:人工神经网络  土壤含水量  预报  模型

Forecast Model of Soil Water Content Based on Artificial Neural Network
GUO Qing-chun , HE Zhen-fang. Forecast Model of Soil Water Content Based on Artificial Neural Network[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(8): 892-895
Authors:GUO Qing-chun    HE Zhen-fang
Affiliation:1.Teaching Affairs Office,Shaanxi Radio&TV University,Xi’an 710068,China; 2.Cold &Arid Regions Environmental &Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China)
Abstract:Soil water content is an important factor affecting crop growth,and the accurate prediction technique is an important guide to reasonable water resources utilization and management.Soil water dynamics is a complex time series system with obviously random fluctuation,closely related to regional climate and ecological environment.A neural network-based scheme for a multivariate analysis of soil water content was presented.Many indices were combined to make long-term forecasts of soil water content in Zhumadian Henan.For soil water content forecasting,the data from water content at low layers was used to train,and validate the network.Output from the network showed relatively satisfying performance with a forecast model in this preliminary study and application of neural network method in prediction of deep soil moisture content was feasible.
Keywords:artificial neural network  soil water content  forecast  model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号