β-Carotene from the Alga Dunaliella bardawil Decreases Gene Expression of Adipose Tissue Macrophage Recruitment Markers and Plasma Lipid Concentrations in Mice Fed a High-Fat Diet |
| |
Authors: | Nir Melnikov Yehuda Kamari Michal Kandel-Kfir Iris Barshack Ami Ben-Amotz Dror Harats Aviv Shaish Ayelet Harari |
| |
Affiliation: | 1.The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.);2.The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;3.N.B.T., Nature Beta Technologies Ltd., Eilat 8851100, Israel;4.The Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel |
| |
Abstract: | Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis β-carotene-rich Dunaliella bardawil alga as the sole source of vitamin A on obesity-associated comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin A-deficient diet supplemented with either vitamin A (HFD) or β-carotene (BC) (HFD-BC). Vitamin A levels in the liver, WATs, and BAT of the HFD-BC group were 1.5–2.4-fold higher than of the HFD group. BC concentrations were 5–6-fold greater in BAT compared to WAT in the HFD-BC group. The eWAT mRNA levels of the Mcp-1 and Cd68 were 1.6- and 2.1-fold lower, respectively, and the plasma cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations. |
| |
Keywords: | vitamin A, β -carotene, obesity, adipose tissue, mice |
|
|