首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Footsteps from Insect Larvae Damage Leaf Surfaces and Initiate Rapid Responses
Authors:Dawn E Hall  Kennaway B MacGregor  Jaap Nijsse  Alan W Bown
Institution:(1) Department of Biological Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1;(2) Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
Abstract:Plant resistance to insect herbivory involves gene expression in response to wounding and the detection of insect elicitors in oral secretions (Kessler and Baldwin, 2002, Ann. Rev. Plant/ Biol. 53: 299–328). However, crawling insect larvae stimulate the synthesis of 4-aminobutyrate within minutes and imprints of larval footsteps can be visualized within seconds through superoxide production or transient increases in chlorophyll fluorescence (Bown et al., 2002, Plant Physiol. 129: 1430–1434). Here cryo-scanning electron microscopy was used to demonstrate that larval feet, which are equipped with a perimeter row of hook-like crochets, damage leaf tissue and result in larval footprints. Staining for cell death shows that areas of wounding correspond to footsteps detected through increased chlorophyll fluorescence. Superoxide production in response to footsteps was inhibited by diphenyleneiodonium, an inhibitor of the plasma membrane NADPH oxidase enzyme. Inhibition of superoxide production, however, did not eliminate the detection of cell death. The results demonstrate that larval footsteps damage leaf tissue, and initiate rapid local responses which are not dependent on herbivory or oral secretions. It is proposed that superoxide production at the wound site prevents opportunistic pathogen infection.
Keywords:superoxide  cell death  cryo-scanning electron microscopy  Lepidoptera  chlorophyll fluorescence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号