Short-term impact of a wildfire on net and gross N transformation rates |
| |
Authors: | María Xesús Gómez-Rey Serafin Jesús Gonzalez-Prieto |
| |
Affiliation: | 1. Instituto de Investigaciones Agrobiológicas de Galicia, IIAG-CSIC, Apartado, 122 15780, Santiago de Compostela, Spain
|
| |
Abstract: | Wildfires often modify soil properties, including the N status and net N mineralization rates, but their impacts on gross N fluxes have been scarcely evaluated. We aimed to ascertain the immediate effects of a medium–high severity wildfire on soil N transformations. Net and gross N rates were analytically and numerically (FLUAZ) quantified in burned (BS) and unburned (US) topsoils from the temperate–humid region (NW Spain). Analytical and numerical solutions were significantly correlated for both gross N mineralization (m) (r 2?=?0.815; p?0.001) and gross nitrification (n) (r 2?=?0.950; p?0.001). In BS, all NH4 +-N fluxes (net m, gross m and gross NH4 +-N immobilization, ‘ia’) increased, while those of NO3 ?-N decreased (gross n and gross NO3 ?-N immobilization, ‘in’) or did not vary (net n). In US and BS, gross m (0.26–3.60 and 4.70–15.42 mg N kg?1 day?1, respectively) predominated over gross n (0.026–2.45 and 0.001–0.002 mg N kg?1 day?1, respectively), and the same was true for the net fluxes. Compared with the few available data on recently burned soils (m?=?8–55 mg N kg?1 day?1; n?=?0.50–1.83 mg N kg?1 day?1), our gross m and n rates were similar and very low, respectively; gross n showed that nitrifiers were active in US and also in BS, despite the 98 % reduction observed immediately after the fire. For gross fluxes, m increased more than ia suggesting an NH4 +-N accumulation, but there is no risk of NO3 ?-N leaching because n decreased more than in. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|