摘 要: | 为解决遥感技术在监测耕层土壤有机质方面的应用问题,利用表层土壤光谱对耕层土壤有机质含量进行估测。以山东省济南市章丘区的表层、耕层各76个土壤样本为研究对象,首先对表层光谱数据进行小波变换去噪、剔除异常样本等处理,然后对处理后的光谱反射率进行一阶微分等10种数学变换,在对数倒数一阶微分和对数一阶微分变换后的反射率数据中选取43个与土壤有机质含量相关系数较高的波段,通过主成分分析以累计贡献率大于90%的标准选取5个主成分作为反演因子,利用BP神经网络(BPNN)、支持向量机回归(SVR)和多元线性回归(MLR)方法建立耕层土壤有机质含量间接估测模型。结果表明,耕层土壤与表层土壤有机质含量之间决定系数R~2达到0.839,显著性P0.01,存在着较强的相关性BPN估测模型的精度最优,决定系数R~2为0.845,平均相对误差为7.642%,RMSE分别为1.622g·kg~(-1)。研究表明,利用表层土壤光谱信息间接估测耕层有机质含量是可行有效的,为耕层土壤有机质的估测问题提供了一种新思路。
|