首页 | 本学科首页   官方微博 | 高级检索  
     

基于多分辨率数据的干旱和半干旱地区地物模糊分类
引用本文:刘姣娣,曹卫彬,裴志远,郭 琳,吴 全. 基于多分辨率数据的干旱和半干旱地区地物模糊分类[J]. 农业工程学报, 2012, 28(8): 220-224
作者姓名:刘姣娣  曹卫彬  裴志远  郭 琳  吴 全
作者单位:1. 石河子大学机械电气工程学院,石河子,832003
2. 农业部规划设计研究院农业资源监测站,北京,100125
基金项目:国家自然基金(40701128);国家科技支撑计划(2007BAH12B04)
摘    要:
为了进一步提高低分辨率遥感数据用于干旱和半干旱地区地物分类精度,该文以新疆石河子垦区为研究区,利用PSA(purposive selection algorithm)算法结合地物分布的统计特性对样本窗口进行选择,确定了最佳样本窗口组合;采用概率密度估计的方法获取了真实的隶属度函数,基于类别隶属度函数构建地物辨别模型;建立了多分辨率数据大尺度土地利用/覆盖遥感分类流程。研究结果表明,借助高空间分辨率数据提取各地物类别的精细分布特征,与Erdas非监督分类相比,模糊分类的总体分类精度提高了20%。该研究可为低分辨率数据的研究与应用提供借鉴。

关 键 词:隶属度函数  遥感  分类  模糊分类  多分辨率数据  干旱半干旱地区
收稿时间:2011-12-14
修稿时间:2012-03-26

Fuzzy classification of arid and semi-arid region features using multi-resolution data
Liu Jiaodi,Cao Weibin,Pei Zhiyuan,Guo Lin and Wu Quan. Fuzzy classification of arid and semi-arid region features using multi-resolution data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 220-224
Authors:Liu Jiaodi  Cao Weibin  Pei Zhiyuan  Guo Lin  Wu Quan
Affiliation:1.College of Machine and Electrical Engineering,Shihezi University,Shihezi 832000,China; 2.Agricultural Resources Monitoring Station,Chinese Academy of Agricultural Engineering,Beijing 100125,China)
Abstract:
To further improve classification accuracy of low-resolution remote data in arid and semi-arid areas, taking Shihezi county in Xinjiang province as the study area, sample windows were selected by combining PSA (purposive selection algorithm) algorithm and statistical properties of region features distribution and finally the best sample window combinations were identified. Authentic membership function was obtained by probability density estimation. Then features identifying model of the region was constructed based on category membership function, and the remote classification flowing chart of large-scale land using/covering was established by using multi-resolution data. The result showed that the classification accuracy of low-resolution data were effectively improved by extracting exquisite distribution characteristics of features in various regions through the high spatial indentifying data, compared with method of Erdas unsupervised classification, the accuracy of fuzzy classification method was improved 20%. The research provides a useful reference and guidance in the researching and application of low-resolution data.
Keywords:membership function   remote sensing   classification   fuzzy classification   multi-resolution data   arid and semi-arid area
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号