首页 | 本学科首页   官方微博 | 高级检索  
     

北京典型耕作土壤养分的近红外光谱分析
引用本文:李 颉,张小超,苑严伟,张俊宁. 北京典型耕作土壤养分的近红外光谱分析[J]. 农业工程学报, 2012, 28(2): 176-179
作者姓名:李 颉  张小超  苑严伟  张俊宁
作者单位:土壤植物机器系统技术国家重点实验室,中国农业机械化科学研究院,北京100083
基金项目:973计划课题(2010CB735707),北京市科技计划资助项目(D101105046310002, D101105046310003)
摘    要:为研究土壤养分含量分布信息,以从北京郊区一块试验田采集的72个土壤样品为试验材料,应用傅里叶变换近红外光谱技术分析了土样的全氮、全钾、有机质养分含量和pH值。采用偏最小二乘法(PLS)对光谱数据与土壤养分实测值进行回归分析,建立预测模型,以模型决定系数(R2)、校正标准差(RMSECV)、预测标准差(RMSEP)和相对分析误差(RPD)作为模型精度的评价指标。结果表明,利用该模型与光谱数据对土壤全氮、全钾、有机质养分含量和pH值进行预测,结果与实测数据具有较好的一致性,最高决定系数R2达到0.9544。偏最小二乘回归方法建立的养分预测模型能准确地对北京地区褐土土质全氮、有机质、全钾和pH值4种养分进行预测。

关 键 词:土壤  养分  傅里叶变换  近红外光谱  偏最小二乘法
收稿时间:2011-03-08
修稿时间:2011-11-09

Analysis of soil nutrient content based on near infrared reflectance spectroscopy in Beijing region
Li Jie,Zhang Xiaochao,Yuan Yanwei and Zhang Junning. Analysis of soil nutrient content based on near infrared reflectance spectroscopy in Beijing region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 176-179
Authors:Li Jie  Zhang Xiaochao  Yuan Yanwei  Zhang Junning
Affiliation:(National Key Laboratory of Soil-Plant-Machine System,Chinese Academy of Agricultural Mechanization Sciences,Beijing 100083,China)
Abstract:To study the distribution of soil nutrients, Fourier transform infrared spectroscopy techniques were used to predict total nitrogen, organic matter, total potassium and pH values of soil. With 72 soil samples collected from the experimental field in the suburbs of Beijing, the models were constructed using partial least-squares (PLS) regression based on the spectral data and measured soil nutrient. The model accuracy was evaluated using determination coefficient (R2), adjusted standard deviation (RMSECV), standard deviation of prediction (RMSEP), and residual prediction deviation (RPD). The results showed that, good consistency can be found between the prediction models and the spectral data of total nitrogen, total potassium, organic matter and pH value, the results and the measured data has, the highest coefficient of determination is R2=0.9544. Nutrient prediction model established by PLS could predict total nitrogen, organic matter, and total potassium and pH values accurately.
Keywords:soils   nutrients   Fourier transforms   near infrared spectroscopy   partial least squares
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号