首页 | 本学科首页   官方微博 | 高级检索  
     

利用改进Faster-RCNN识别小麦条锈病和黄矮病
作者姓名:毛锐  张宇晨  王泽玺  高圣昌  祝涛  王美丽  胡小平
作者单位:1. 西北农林科技大学信息工程学院,杨凌 712100;;2. 西北农林科技大学植物保护学院,杨凌 712100; 3. 农业农村部黄土高原作物有害生物综合治理重点实验室,杨凌 712100;
基金项目:陕西省科技厅区域创新能力引导计划(2022QFY11-03);国家现代农业(小麦)产业技术体系项目(CARS-03-37);农业农村部农作物病虫鼠害疫情监测与防治项目;大学生创新训练项目(X202110712436)
摘    要:条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN Features,Faster-RCNN)的病害识别方法。该方法采用卷积核拆解和下采样延迟策略优化了深度残差网络(Deep Residual Neural Network,ResNet-50),用优化后的ResNet-50作为主干特征提取网络以增强所提取特征的表达力,同时简化模型的参数;并采用ROI (Region of Interest)Align改进ROI迟化层以降低特征量化误差,提升识别的精度。在自建的涵盖200余种不同发病时期、不同抗感性的小麦叶部图像数据集上进行试验,结果表明:改进的Faster-RCNN识别方法比其他SSD (Single Shot Multi-Box Detector)、YOLO(You Only Look Once)和Faster-RCNN网络模型的平均精度均值(mean Average Precision,mAP)分别提升了9.26个百分点、7.64个百分点和14.97个百分点。对小麦条锈病、黄矮病、健康小麦和其他黄化症状小麦识别的平均精度均值可达98.74%;对小麦条锈病和黄矮病轻、重症识别的平均精度均值可达91.06%。同时,模型损失函数值降低更快,整体性能表现更优。进一步开发小麦病害智能识别系统部署研究模型,使用微信小程序进行田间小麦病害的识别。在最大并发100的条件下,小程序平均返回时延为5.02 s,识别返回成功率为97.85%,对两种小麦病害及其细分轻重症识别的平均准确率为93.56%,能够有效满足实际应用需求,可用于指导病害的科学防控。

关 键 词:模型  病害识别  Faster-RCNN  ResNet  分组卷积  数据增强
收稿时间:2022-04-10
修稿时间:2022-08-25
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号