首页 | 本学科首页   官方微博 | 高级检索  
     

一类线性脉冲微分方程的有界变差解
引用本文:李宝麟,刘海霞. 一类线性脉冲微分方程的有界变差解[J]. 西南大学学报(自然科学版), 2012, 34(1): 015-022
作者姓名:李宝麟  刘海霞
作者单位:西北师范大学数学与信息科学学院
基金项目:国家自然科学基金资助项目(11061031)
摘    要:
讨论了一类非齐次线性脉冲微分方程与Kurzweil广义线性常微分方程的关系,建立了此类方程有界变差解的局部存在性和唯一性定理,并利用常数变易法得到其通解公式,讨论了此类方程的有界变差解对参数的连续依赖性定理.

关 键 词:线性脉冲微分方程  Kurzweil广义线性常微分方程  有界变差解  参数的连续依赖性

Bounded Variational Solutions for Linear Differential Equations with Impulses
LI Bao-lin,LIU Hai-xia. Bounded Variational Solutions for Linear Differential Equations with Impulses[J]. Journal of southwest university (Natural science edition), 2012, 34(1): 015-022
Authors:LI Bao-lin  LIU Hai-xia
Affiliation:College of Mathematics and Information Science,Northwest Normal University,Lanzhou 730070,China
Abstract:
The relation between a class of non-homogeneous linear impulsive differential systems and Kurzweil generalized linear ordinary differential equations is discussed.The local existence and uniqueness theorems of bounded variation solutions for this class of linear impulsive differential equations are established.The formulae of the bounded variational solutions for the linear differential equations with impulses are established with the constant variation method.The continuous dependence on a parameter for the linear differential equations with impulses is discussed.
Keywords:linear differential equation with impulses  Kurzweil generalized linear ordinary differential equation  locally bounded variation solution  continuous dependence on a parameter
本文献已被 CNKI 等数据库收录!
点击此处可从《西南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号