首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于物联网技术的日光温室黄瓜白粉病预警系统研究
引用本文:吕雄杰,王晓蓉,贾宝红.基于物联网技术的日光温室黄瓜白粉病预警系统研究[J].农业科学与技术,2016(12).
作者姓名:吕雄杰  王晓蓉  贾宝红
作者单位:1. 天津市农业科学院信息研究所,天津,300192;2. 天津市农业科学院,天津,300192
基金项目:天津市科技支撑计划项目(15ZCZDNC00120)。Supported by the Science and Technology Support Program of Tianjin (15ZCZDNC00120)
摘    要:运用物联网技术实现对日光温室黄瓜的生长环境包括空气温湿度与土壤温湿度和白粉病发病状况进行了实时动态监测和采集,并采取 Logistic回归模型建立日光温室黄瓜白粉病预警模型,以期探索基于物联网技术的日光温室黄瓜白粉病预警系统的设计与构建。研究结果表明:湿度特征变量(最大空气湿度)、温度特征变量(最大空气温度)对日光温室黄瓜白粉病的发病概率均有显著影响,且基于物联网技术构建日光温室黄瓜白粉病预警系统是可行的。

关 键 词:日光温室  黄瓜  白粉病  物联网  预警模型

Construction of Cucumber Powdery Mildew Early Warning System in Solar Greenhouse Based on lnternet of Things
Abstract:ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cucumber powdery mildew and cucumber growth environment in solar greenhouse. The growth environ-ment included temperature and humidity of air and soil. Logistic regression model was used to construct cucumber powdery mildew warning model. The results showed that humidity characteristic variable (maximum air humidity) and temperature characteristic variable (maximum air temperature) had significant effects on the inci-dence probability of cucumber powdery mildew in solar greenhouse. And it was fea-sible to construct cucumber powdery mildew warning system in solar greenhouse with internet of things.
Keywords:Solar Greenhouse  Cucumber  Powdery Mildew  lnternet of Things  Warning Model
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号