首页 | 本学科首页   官方微博 | 高级检索  
     

储粮害虫图像识别中的特征压缩研究
引用本文:张红涛,胡玉霞,张恒源,顾波. 储粮害虫图像识别中的特征压缩研究[J]. 安徽农业科学, 2008, 36(27)
作者姓名:张红涛  胡玉霞  张恒源  顾波
作者单位:1. 华北水利水电学院电力学院,河南郑州,450011
2. 郑州大学电气工程学院,河南郑州,450001
基金项目:河南省教育厅自然科学基金,华北水利水电学院校科研和教改项目
摘    要:
为了降低储粮害虫特征空间的维数,并去除粮虫特征之间的信息冗余,需要对特征选择后的特征进行压缩处理。运用基于总体类内离散度矩阵K-L变换的特征压缩和基于距离可分性准则的特征压缩2种压缩方法,分别在累积贡献率为88.11%和99.13%的情况下,将粮虫的10维特征压缩为5维。应用压缩后的5维特征,由基于模糊决策的模糊分类器对粮仓中常见的9类粮虫进行识别分类,识别率分别为93.33%和95.56%。结果证实了基于距离可分性准则的特征压缩更适合于粮虫的特征压缩。

关 键 词:储粮害虫  特征压缩  图像识别  特征选择

Research on Feature Compression in the Image Recognition of the Stored-grain Pests
ZHANG Hong-tao et al. Research on Feature Compression in the Image Recognition of the Stored-grain Pests[J]. Journal of Anhui Agricultural Sciences, 2008, 36(27)
Authors:ZHANG Hong-tao et al
Abstract:
The feature compression is necessary to reduce feature dimensions and remove the information redundancies among features of the stored-grain pests.The K-L translations based on the global in-class discrete matrix and the distance separable rule are proposed,and 10 dimension features are compressed into 5 dimensions,and the accumulative contribution ratio is 88.11% and 99.13% respectively.The nine categories of the stored-grain pests in grain-depot were automatically recognized by the classifier based on fuzzy decision,making use of the compressed features,the correct identification ratio is 93.33% and 95.56% respectively.The experiment shows that the compression based on the distance separable rule is more practical to compress the features of the stored-grain pests.
Keywords:Stored-grain pests  Feature compression  Image recognition  Feature selection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号