首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced Mobilization of Field Contaminated Soil-bound PAHs to the Aqueous Phase under Anaerobic Conditions
Authors:Han S Kim  Katherine S Lindsay  Frederic K Pfaender
Institution:1. Environmental Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, South Korea
2. Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Room 104, Rosenau Hall, CB 7431, Chapel Hill, NC, 27599-7431, USA
Abstract:Although microbially-mediated redox environments can alter the characteristics of soil/sediment organic matter (SOM) and its interactions with persistent hydrophobic organic contaminants (HOCs) bound to soils and sediments, the nature of their effects has not been adequately addressed. In this study, a field soil collected from a manufacturer gas plant site and contaminated historically with creosotes was incubated under aerobic and anoxic/anaerobic conditions along with various amendments (extra carbon and enrichment minerals) for stimulating microbial activities. Anaerobic conditions stimulated significant fractions of bound polycyclic aromatic hydrocarbons (PAHs) encompassing naphthalene through benzog,h,i]perylene to be mobilized to the aqueous phase, leaving their aqueous phase concentrations far in excess of solubility (increases in their apparent aqueous phase concentrations by factors as high as 62.8 relative to their initial aqueous phase concentrations). Such effects became more evident for high molecular weight PAHs. Dissolved organic matter exhibiting a high affinity for PAHs was liberated from soils during the anaerobic soil incubations. Feasibility of this concept for field applications was evaluated with a lab-scale continuous flow system composed of an anaerobic soil column followed by an aerobic bioreactor inoculated with PAH-degrading microbes. High quantities of PAHs exceeding their aqueous solubilities were eluted from the anaerobic soil column and those mobilized PAHs were readily bioavailable in the secondary aerobic bioreactor. This study may offer a potential method for cost-effective and performance-efficient ex situ remediation technologies (or in situ if appropriate hydrological control available in the contaminated field site) and risk assessment for the HOC-contaminated soils/sediments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号