首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale
Authors:Hongyan Song  Kelin Hu  Yi An  Chong Chen  Guangde Li
Institution:1.College of Resources and Environmental Sciences,China Agricultural University,Beijing,China;2.Ago-Environmental Protection Institute,Ministry of Agriculture,Tianjin,China;3.College of Resources and Environmental Science,Shandong Agricultural University,Tai’an,China
Abstract:

Purpose

Understanding the spatial distribution and sources of soil heavy metals (HMs) in a large city helps prevent and control soil pollution. This study aimed to investigate the spatial patterns of soil HMs and identify their main sources in a regional scale.

Materials and methods

A total of 110 topsoil samples were collected from Tai’an City, China. Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations in each soil sample were determined. Geostatistics, geographic information system (GIS), and positive matrix factorization (PMF) were used to explore the spatial distribution of seven soil HMs and to reveal the main sources of soil HMs in Tai’an City, respectively.

Results and discussion

Soil Cd, Cr, Pb, and Zn generally showed slight pollution levels in the study area. However, soil Hg and Cu contents reached moderate to heavy pollution levels in some areas. Soil Hg content increased from north to south across the city, and the highest Hg concentration was detected in Ningyang County. Soil Cd, Cu, and Zn distributions exhibited a similar pattern, and their contents increased from west to east; the highest Cd, Cu, and Zn concentrations were found in Xintai County. The highest soil Ni concentration was obtained in the northeast of Feicheng and Xintai counties. PMF analysis revealed the following four potential sources of agricultural soil HMs in Tai’an City: industrial and mining activities, agricultural activities, residential living activities, and business activities. Soil Hg mainly originated from residential living activities, which accounted for 75.3% of the total source. The main sources of soil Ni were residential living activities, agricultural activities, and industrial and mining activities, which account for 38.2, 27.50, and 25.1% of the total source, respectively. Soil Cu was mainly produced by agricultural activities (36.6%), followed by residential living activities (29.8%) and industrial and mining activities (25.8%).

Conclusions

PMF combined with GIS could be effectively applied to determine the main sources of HMs in agricultural soils in a regional scale.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号