Abstract: | The meiotic behavior of three tall fescue (Festuca arundinacea, 2n = 6x = 42) genotypes, giant fescue (F. gigantea, 2n = 6x = 42), and their reciprocal F1 hybrids and C1, amphiploids was evaluated to determine the parental genomic relationships. Isozyme banding patterns were used to confirm the parental identity of the hybrids and amphiploids. At meta-phase I, the parents had predominantly bivalent pairing. The hybrids had an average of 9.51 I, 16.02 II, 0.12 III, 0.02 IV, and the amphiploids had 2.17 I, 38.82 II, 0.60 III, 0.58 IV, 0.01 V—VIII. The prevalence of bivalent pairing in both hybrids and amphiploids suggested a homoeologous relationship between the six genomes, with four of the six being more closely related. Bivalent pairing in the amphiploids indicated genetic regulation of chromosome pairing. Zymograms were obtained for acid phosphatase (ACPH), alcohol dehydrogenase (ADH), glutamate oxaloacetate transaminase (GOT), malate dehydrogenase (MDH), 6-phosphogluconate dehydrogenase (6-PGD) and phosphoglucoisomerase (PGI). The three tall fescue and giant fescue parents had different zymograms for ACPH, MDH, 6-PGD and PGI; thus, the tall fescue parents of the hybrids and amphiploids could be determined based on the banding patterns of these four enzymes. Phenotypes were determined for ACPH-1, PGI-2 and 6-PGD-1. ACPH-1 may be used to follow the introgression of giant fescue chromatin into a certain tall fescue genotype. |