首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mode of action,crop selectivity,and soil relations of the sulfonylurea herbicides
Authors:Hugh M Brown
Abstract:The sulfonylurea herbicides are characterized by broad-spectrum weed control at very low use rates (c. 2–75 g ha?1), good crop selectivity, and very low acute and chronic animal toxicity. This class of herbicides acts through inhibition of acetolactate synthase (EC 4.1.3.18; also known as acetohydroxyacid synthase), thereby blocking the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. This inhibition leads to the rapid cessation of plant cell division and growth. Crop-selective sulfonylurea herbicides have been commercialized for use in wheat, barley, rice, corn, soybeans and oilseed rape, with additional crop-selective compounds in cotton, potatoes, and sugarbeet having been noted. Crop selectivity results from rapid metabolic inactivation of the herbicide in the tolerant crop. Under growth-room conditions, metabolic half-lives in tolerant crop plants range from 1–5 h, while sensitive plant species metabolize these herbicides much more slowly, with half-lives > 20 h. Pathways by which sulfonylurea herbicides are inactivated among these plants include aryl and aliphatic hydroxylation followed by glucose conjugation, sulfonylurea bridge hydrolysis and sulfonamide bond cleavage, oxidative O-demethylation and direct conjugation with (homo)glutathione. Sulfonylurea herbicides degrade in soil through a combination of bridge hydrolysis and microbial degradation. Hydrolysis is significantly faster under acidic (pH 5) than alkaline (pH 8) conditions, allowing the use of soil pH as a predictor of soil residual activity. Chemical and microbial processes combine to give typical field dissipation half-lives of 1–6 weeks, depending on the soil type, location and compound. Very short residual sulfonylurea herbicides with enhanced susceptibility to hydrolysis (DPX-L5300) and microbial degradation (thifensulfuron-methyl) have been developed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号