首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contribution of nitrification and denitrification to N2O emissions from urine patches
Authors:Mette S Carter
Institution:Biosystems Department, Risø National Laboratory, Technical University of Denmark, P.O. Box 49, DK 4000 Roskilde, Denmark
Abstract:Urine deposition by grazing livestock causes an immediate increase in nitrous oxide (N2O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (15N) labelling study was conducted in an organic grass-clover sward to examine the initial effect of urine on the rates and N2O loss ratio of nitrification (i.e. moles of N2O-N produced per moles of nitrate produced) and denitrification (i.e. moles of N2O produced per moles of N2O+N2 produced). The effect of artificial urine (52.9 g N m−2) and ammonium solution (52.9 g N m−2) was examined in separate experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N2O loss derived from nitrification or denitrification was determined in the field immediately after application of 15N-labelled solutions. During the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N2O emission from 3.9 to 42.3 μg N2O-N m−2 h−1, whereas application of ammonium increased the emission from 0.9 to 6.1 μg N2O-N m−2 h−1. In the urine-affected soil, nitrification and denitrification contributed equally to the N2O emission, and the increased N2O loss resulted from a combination of higher rates and higher N2O loss ratios of the processes. In the present study, an enhanced nitrification rate seemed to be the most important factor explaining the high initial N2O emission from urine patches deposited on well-aerated soils.
Keywords:Denitrification  Grass-clover  Grassland  Gross nitrification  Loss ratio  15N  Nitrous oxide  pH  Urine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号